

PFAS Detailed Site Investigation

Proserpine Fire Station, 102 Main Street, Proserpine, Queensland

Queensland Fire and Emergency Services

16 December 2019

60609758 Revision 0 - Final

PFAS Detailed Site Investigation

Client: Queensland Fire and Emergency Services

ABN: 93 035 163 778

Prepared by

AECOM Australia Pty Ltd Level 8, 540 Wickham Street, PO Box 1307, Fortitude Valley QLD 4006, Australia T +61 7 3553 2000 F +61 7 3553 2050 www.aecom.com ABN 20 093 846 925

16-Dec-2019

Job No.: 60609758

AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 AS/NZS4801 and OHSAS18001.

© AECOM Australia Pty Ltd. All rights reserved.

© AECOM Australia Pty Ltd. All rights reserved. AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

Document	PFAS Detailed Site Investigation
Ref	60609758
Date	16-Dec-2019
Prepared by	Camden McCosker and James Peachey
Reviewed by	Frances Lee

Revision History

Rev	Revision Date	Details	Authorised		
	Revision Date		Name/Position	Signature	
A	18-Sep-2019	Draft	James Peachey Project Manager		
В	23-Oct-2019	Draft	James Peachey Project Manager		
0	16-Dec-2019	Final	James Peachey Project Manager	spanny	

Table of Contents

1.0	Introdu	ction	1
	1.1	General	1
	1.2	Background	1
	1.3	Objectives	1
	1.4	Scope of Works	
	1.5	PFAS Analysis	2
	1.6	Relevant Regulation and Guidance	2 2 3
2.0	Site Se		4
	2.1	Site Identification	4
	2.2	Site Layout and Features	
	2.3	Surrounding Land Use	5
	2.4	Previous Environmental Investigation	5
3.0	Enviror	nmental Setting	4 5 5 7
	3.1	Climate	7
	3.2	Site Topography	7
	3.3	Soil Type and Acid Sulfate Soils	7
	3.4	Geology	8
	3.5	Hydrology	8
	3.6	Hydrogeology	8
	3.7	Environmental Values	9
	3.8	Groundwater Dependent Ecosystems (GDE) and Environmentally Sensitive	-
		Areas	9
4.0	Fieldwo	ork- DSI	10
	4.1	Overview	10
	4.2	Sampling Rationale	10
	4.3	Laboratory Analysis and Quality Assurance / Quality Control	13
5.0		ment Criteria	14
6.0	Results		15
	6.1	Soil Conditions	15
	6.2	Hydrogeology	15
	6.3	Analytical Results	16
7.0	Discuss		18
	7.1	Geological and Hydrogeological Conditions	18
	7.2	Soil Analytical Results	18
	7.3	Groundwater Analytical Results	20
	7.4	Comparison of PFAS composition in soil and groundwater samples	20
8.0		otual Site Model - PFAS	23
	8.1	Introduction	23
	8.2	Contaminants of Potential Concern	23
	8.3	Sources	23
	8.4	Migration Mechanisms	24
	8.5	Receptors and Exposure Pathways	25
	8.6	Assessment of Exposure Pathways	25
9.0	Conclu		29
10.0	Referer		31
11.0	Limitati		33
Appen			•
	Figures		A
Appen	dix B		
	Tables		В
Appen	div C		
-pheu	Photog	ranhs	С
	i notog		0

Appendix D Bore Logs	D
Appendix E Fieldsheets and Calibration Certificates	E
Appendix F Surveying Report	F
Appendix G Analytical Data Validation	G
Appendix H Analytical Laboratory Reports	н

List of Tables (in text)

Compounds analysed in the PFAS suite	3
Proserpine Fire Station site identification	4
Proserpine Fire Station surrounding land use	5
Summary of Monthly Climate at Proserpine Airport 1988 to 2019	7
Registered groundwater bores within 500m of Proserpine Fire Station	8
Summary of fieldwork	10
Sampling rationale	10
Soil investigation methodology	11
Groundwater investigation methodology	12
Summary of laboratory analyses	13
Adopted investigation levels for PFAS	14
Summary of groundwater quality parameter results	15
Summary of PFAS soil analytical results and assessment with human health	
guideline values	16
Summary of PFAS soil analytical results and assessment with ecological	
guideline values	16
Assessment of groundwater results with human health guideline values	17
Summary of TOPA analysis (soil and groundwater)	17
Soil analytical results for \sum (PFHxS+PFOS)	19
Average PFAS composition in soil and groundwater samples	21
Proserpine Fire Station PFAS CSM	26
	Proserpine Fire Station site identification Proserpine Fire Station surrounding land use Summary of Monthly Climate at Proserpine Airport 1988 to 2019 Registered groundwater bores within 500m of Proserpine Fire Station Summary of fieldwork Sampling rationale Soil investigation methodology Groundwater investigation methodology Summary of laboratory analyses Adopted investigation levels for PFAS Summary of groundwater quality parameter results Summary of PFAS soil analytical results and assessment with human health guideline values Summary of PFAS soil analytical results and assessment with ecological guideline values Assessment of groundwater results with human health guideline values Summary of TOPA analysis (soil and groundwater) Soil analytical results for Σ (PFHxS+PFOS) Average PFAS composition in soil and groundwater samples

List of Figures (in Appendix A)

- Figure 1 Site Location
- Figure 2 Site Layout and Sampling Locations
- Figure 3 Inferred Groundwater Contours: 6 August 2019
- Figure 4 Soil PFAS Analytical Results
- Figure 5 Groundwater PFAS Analytical Results
- Figure 6 PFAS Conceptual Site Model

List of Tables (in Appendix B)

- Table T1Well Construction Details
- Table T2Groundwater Gauging Results
- Table T3
 Groundwater Quality Parameter Results
- Table T4 Soil Analytical Results
- Table T5 Groundwater Analytical Results

Abbreviations

AFFF	Aqueous film forming foam		
AHD	Australian height datum		
ASC NEPM	Assessment of Site Contamination National Environment Protection Measure 1999 (as amended 2013)		
ASRIS	Australian Soil Resources Information System		
ASS	Acid sulfate soil		
CLA	Contaminated Land Auditor		
CLID	Contaminated land investigation document		
CLR	Contaminated Land Register		
COPC	Contaminants of potential concern		
CSM	Conceptual site model		
DES	Department of Environment and Science		
DO	Dissolved oxygen		
DQO	Data quality objectives		
DQI	Data quality indicator		
DSI	Detailed site investigation		
EC	Electrical Conductivity		
EMR	Environmental Management Register		
EPP	Environmental Protection Policy		
ESA	Environmentally Sensitive Areas		
EV	Environmental Values		
GDE	Groundwater Dependent Ecosystems		
НЕРА	Heads of Environmental Protection Agencies Australia and New Zealand		
LOR	Limits of reporting		
mbgl	Metres below ground level		
mbtoc	Metres below top of casing		
NATA	National Association of Testing Authorities		
NDD	Non-destructive drilling		
NEMP	National Environmental Management Plan		
NEPC	National Environment Protection Council		
NMI	National Measurement Institute		
NRME	[Department of] Natural Resourcing, Mining and Energy		
ORP	Oxidation reduction potential		
PFAS	Per- and poly-fluoroalkyl substances		
PFHxS	Perfluorohexanesulfonic acid		
PFOA	Perfluorooctanoic acid		

PFOS	Perfluorooctanesulfonic acid
PSI	Preliminary site investigation
QA/QC	Quality assurance / quality control
QFES	Queensland Fire and Emergency Services
SAQP	Sampling analysis and quality plan
SIR	Site investigation report
SOP	Standard operating procedure
SWL	Static water level
TDS	Total dissolved solids
ΤΟΡΑ	Total oxidisable precursor assay
USCS	Unified soil classification system
USEPA	United States Environmental Protection Agency
WRC	Whitsundays Regional Council

Glossary of Terms

Term	Definition	
Aquifer	Geologic formation, group of formations, or part of a formation capable of transmitting and yielding economic or significant quantities of water.	
Bore	A cylindrical drill hole sunk into the ground from which water is pumped for use or monitoring.	
Borehole	A hole produced in the ground by drilling for the investigation and assessment of soil and rock profiles.	
Discharge	A release of water from a particular source.	
Drainage	Natural or artificial means for the interception and removal of surface or subsurface water.	
Finished Foam	Finshed foam is formed following aeration of the foam concentrate.	
Groundwater	Water located within an aquifer; that is, held in the rocks and soil beneath the earth's surface.	
Groundwater monitoring well	A bore which has been specifically constructed to allow groundwater measurements to be taken and groundwater samples to be collected.	
Groundwater recharge	A hydrologic process by which water enters the aquifer by moving downwards from surface water to groundwater.	
Hydrogeology	The study of subsurface water in its geological context.	
Hydrology	The study of rainfall and surface water runoff processes.	
Impact	Influence or effect exerted by a project or other activity on the natural, built and community environment.	
Pollutant / contaminant	Any matter that is not naturally present in the environment.	
Runoff	The portion of water that drains away as surface flow.	
Saturated zone	This portion of the subsurface below the groundwater table in which all pores in the soil and rock are completely filled with water.	
Stormwater	Water that travels through drains following precipitation events.	
Surface water	Water flowing or held in streams, rivers and other wetlands in the landscape.	
Tributary	A river or stream flowing into a larger river or lake.	
Unsaturated zone	The portion of the subsurface above the groundwater table. The soil and rock in this zone contain air as well as water in its pores.	
Water table	The surface of saturation in an unconfined aquifer at which the pressure of the water is equal to that of the atmosphere.	

Executive Summary

Background

AECOM Australia Pty Ltd (AECOM) was engaged by Queensland Fire and Emergency Services (QFES) to undertake an evaluation of the concentration and distribution of per- and poly- fluoroalkyl substances (PFAS) at Proserpine Fire Station, located at 102 Main Street, Proserpine, Queensland (the site). The location of the site is shown in **Figure 1** in **Appendix A**.

QFES is conducting the PFAS environmental investigation at Proserpine Fire Station using a staged approach. Stage 1 consisted of a preliminary site investigation (PSI) and sampling, analysis and quality plan (SAQP), which was completed in April 2019 (AECOM, 2019). Under Stage 2 of the project, a Queensland Contaminated Land Auditor (CLA) reviewed and endorsed the works completed in Stage 1. Following completion of Stages 1 and 2, QFES has engaged AECOM to undertake Stage 3 of the project, which is the delivery of the PFAS detailed site investigation (DSI) to implement the scope of work identified in the SAQP.

This report forms the Site Investigation Report (SIR) for the DSI and is consistent with the requirements of a Contaminated Land Investigation Document (CLID).

Key Findings of the PSI

The PSI (AECOM, 2019) was completed to understand the potential for PFAS contamination to be present at the fire station based on a review of site and environmental setting and historical operations and practices. The PSI identified that firefighting training using aqueous film forming foams (AFFF) containing PFAS occurred infrequently at the fire station between the 1990s and 2003. Based on the findings of a site inspection and anecdotal information from site staff, firefighting training using AFFFs took place in the open area in the central portion of the site, which is presently sealed with concrete. Historically, this area was unpaved. The volume of foam used was not able to be identified, however its use was noted to be limited. Historically, drums of foam were stored in the main fire station building and in the workshop. The areas formerly used for firefighting training exercises and foam storage areas were identified as potential PFAS source areas.

Objectives

The objectives of the works were to characterise potential PFAS impacts in soil and groundwater, including concentration and distribution, within and at the boundaries of the Proserpine Fire Station to assess the potential risks to human health and the environment and to update the PFAS conceptual site model for the site.

Investigation Scope

The DSI was completed between July and September 2019. The DSI scope of works were completed in accordance with the SAQP (AECOM, 2019) and included the drilling of four soil bores on the site that were converted to groundwater monitoring wells (drilled to approximately six metres below ground level, mbgl), advancement of one soil bore to 0.5 mbgl, collection of soil and groundwater samples from the bores and wells with laboratory analysis for PFAS and preparation of this interpretative report.

Key Findings of the DSI

The key findings of the DSI are presented below.

• Groundwater elevations in August 2019 indicated a shallow aquifer is present beneath the site. Depth to groundwater was approximately 3.5 mbgl. In the former firefighting training area in the eastern central portion of the site, groundwater was inferred to flow locally in a north westly to south westly direction. The potential for groundwater to flow towards the east was uncertain. The regional groundwater flow direction is likely to be to the north, towards the Proserpine River, which is the main hydrological feature of the area.

- The main PFAS compounds present in the soil samples analysed were perfluorohexanesulfonic acid (PFHxS) and perfluorooctanesulfonic acid (PFOS). ∑(PFHxS+PFOS) and perfluorooctanoic acid (PFOA) concentrations in the 14 soil samples analysed from five soil bores did not exceed National Environmental Management Plan (NEMP) (HEPA, 2018) health guideline values for commercial landuse. The concentration of PFOS in one soil sample (PR_BH03 at 0.5 mbgl at 0.2 mg/kg) exceeded the NEMP (HEPA, 2018) interim soil ecological PFOS guideline value for indirect exposure for commercial landuse. The maximum PFOS concentration was detected in a sample of fill from the area formerly used for firefighting training in the central portion of the site. As the majority of the site is covered by concrete, the potential for ecological receptors to be exposed to PFOS in the site soil is considered to be low. The soil samples analysed indicated that soil PFAS concentrations decreased with increased depth, with higher PFAS concentrations in the near-surface fill material.
- The main PFAS compounds detected in groundwater were PFHxS and PFOS. Elevated ∑(PFHxS+PFOS) concentrations (i.e. exceeding NEMP (HEPA, 2018) drinking water and recreational water quality guideline values) were detected in groundwater samples from all four newly installed monitoring wells. The monitoring well with the highest ∑(PFHxS+PFOS) concentrations (49.0 µg/L, PR_MW02), is located in the southeastern portion of the area previously used for firefighting training exercises.
- The laboratory analytical technique for total oxidisable precursor assay (TOPA) is used to detect certain harder to analyse PFAS precursor compounds that may be present. The results of TOPA analysis on one soil and one groundwater sample did not indicate the presence of PFAS precursors. The results indicated a degraded PFAS product that is unlikely to significantly increase or alter through biotransformation or oxidation processes.
- The lateral extent of the area of groundwater with elevated concentrations of PFHxS and PFOS is uncertain and potentially extends off-site in all directions at concentrations in excess of human health and ecological guideline values. Commercial property is present adjacent to the site to the south. Residential properties are located beyond the commercial property, approximately 100 m south of the southern site boundary. The Proserpine River is located approximately 850 m to the north of the site.
- Information on the Queensland Government website indicates that water supply bores across
 Proserpine were sampled and analysed for PFAS in 2018. Concentrations in one bore located
 1.6 km southwest of the site (at Proserpine Showgrounds) exceeded drinking water guidelines for
 PFAS, however concentrations in samples from 23 other bores in Proserpine did not exceed
 drinking water guideline values. Although it is not known how close the bores that were sampled
 are to the site, these results provide information on PFAS concentrations in the wider Proserpine
 area. PFAS was not detected in surface water samples from the Proserpine River and Lagoon
 Creek. This suggests source areas of PFAS at the site are unlikely to impact the Proserpine
 River.
- Based on information provided as part of the PSI, the source of the PFAS detected in soil and groundwater samples is considered likely to be related to the historical firefighting training practices at the fire station, and/or spills from storage containers, product transfer and other maintenance activities.

Based on these key findings, the PFAS conceptual site model developed for the PSI has been updated. A number of possibly complete exposure pathways for PFAS sourced from the fire station to impact off-site human and ecological receptors have been identified. The significance of these potentially complete source-pathway-receptor linkages is uncertain and further investigation is required to understand the potential risks to off-site receptors.

1.0 Introduction

1.1 General

AECOM Australia Pty Ltd (AECOM) was engaged by Queensland Fire and Emergency Services (QFES) to undertake an evaluation of the concentration and distribution of per- and poly- fluoroalkyl substances (PFAS) at Proserpine Fire Station, located at 102 Main Street, Proserpine, Queensland (the site). The location of the site is shown in **Figure 1** in **Appendix A**.

Historical practices and operations at QFES facilities including Proserpine Fire Station may have involved using firefighting foam containing PFAS. PFAS are an emerging family of compounds that are highly soluble, persistent and bioaccumulative in the environment. Following release to ground, they can be readily mobilised from soil source zones, and migrate significant distances in surface water and groundwater.

1.2 Background

QFES is conducting the environmental investigation at Proserpine Fire Station using the following staged approach:

- Stage 1: Development of the preliminary site investigation (PSI) and sampling, analysis and quality plan (SAQP). This stage was completed in April 2019 (AECOM, 2019).
- Stage 2: Review and endorsement of the PSI and SAQP by a Queensland Contaminated Land Auditor (CLA). This stage was completed in April 2019.
- Stage 3: Implementation of the scope of works identified in the SAQP by conducting a detailed site investigation (DSI) and completion of a draft site investigation report (SIR).
- Stage 4: Review and endorsement of the SIR report by a CLA.
- Stage 5: Provide the final SIR to the regulator (DES) and subject to any further requirements, procure a suitable environmental consultant to design an investigation plan to measure and assess off-site impacts.
- Stage 6: Engage an appropriately qualified third party CLA to audit the suitability of any offsite investigation plan to meet the requirements of DES prior to implementation.

This report forms the SIR for the Stage 3 DSI and has been prepared to meet the requirements of a Contaminated Land Investigation Document (CLID).

1.3 Objectives

The objectives of the works were to characterise potential PFAS impacts in soil and groundwater, at Proserpine Fire Station, to assess the potential risks to human health and the environment and to update the PFAS conceptual site model for the site.

The key outcomes / deliverables of the Stage 3 works were as follows:

- Undertaking soil and groundwater sampling at Proserpine Fire Station, in accordance with the SAQP.
- Preparation of a draft SIR detailing the implementation of the DSI, in accordance with Australian guidance for investigation of sites potentially impacted by PFAS including the National Environmental Protection Council (NEPC), National Environmental Protection (Assessment of Site Contamination) Measure (NEPM) (1999, as amended 2013) (NEPC, 2013) and the PFAS National Environmental Management Plan (Heads of Environmental Protection Agencies (HEPA), 2018).

The stage 4 deliverable will be a final SIR that incorporates any comments/ corrections from the QFES review and inclusion of all the requirements of the audit by the CLA.

1.4 Scope of Works

The scope of work undertaken to meet the objectives of the PFAS DSI were as follows:

- Completion of fieldwork in accordance with the CLA-endorsed SAQP (AECOM, 2019) which included the following activities:
 - Drilling of four soil bores (PR_BH01-PR_BH04) to approximately 6 metres below ground level (mbgl), which were converted to groundwater monitoring wells (PR_MW01-PR_MW04). Collection of soil samples at approximately 1.0m intervals. Development of groundwater monitoring wells.
 - Collection of soil samples from a shallow soil bore (SS1) to 0.5 mbgl advanced in an unsealed area adjacent to the southern site boundary.
 - Collection of groundwater samples from the four new groundwater monitoring wells.
 - Surveying of the top of the casing at each monitoring well to MGA94 coordinates and Australian Height Datum (AHD).
 - Laboratory analysis of soil and groundwater for PFAS, with groundwater analysed for trace level concentrations.
- Preparation of a SIR (this report), which includes an update of the PFAS conceptual site model (CSM).

1.5 PFAS Analysis

Aqueous film forming foam (AFFF) manufactured over the last 50 years are estimated to contain between 200 and 600 possible PFAS compounds of varying signatures / composition (PFAS National Environmental Management Plan [NEMP, Heads of EPA [HEPA] 2018¹). However, at present, Australian commercial analytical laboratories, using National Association of Testing Authority (NATA) accredited methods, are currently able to analyse for around 28 PFAS (see **Table 1**). This analytical limitation is not considered significantly influential as the current PFAS laboratory analytical schedule includes the compounds that have guidelines available. These compounds were also the primary ingredients of AFFF and are more likely to be encountered where AFFF was used, stored and/or discharged.

¹ Noting that the NEMP Version 2.0 is expected to be published in 2020.

PFAS Group	Compound	Abbreviation	CAS No.
Perfluoroalkyl	Perfluorobutane sulfonic acid	PFBS	375-73-5
Sulfonic Acids	Perfluoropentane sulfonic acid	PFPeS	2706-91-4
	Perfluorohexane sulfonic acid	PFHxS	355-46-4
	Perfluoroheptane sulfonic acid	PFHpS	375-92-8
	Perfluorooctane sulfonic acid	PFOS	1763-23-1
	Perfluorodecane sulfonic acid	PFDS	335-77-3
Perfluoroalkyl	Perfluorobutanoic acid	PFBA	375-22-4
Carboxylic	Perfluoropentanoic acid	PFPeA	2706-90-3
Acids	Perfluorohexanoic acid	PFHxA	307-24-4
	Perfluoroheptanoic acid	PFHpA	375-85-9
	Perfluorooctanoic acid	PFOA	335-67-1
	Perfluorononanoic acid	PFNA	375-95-1
	Perfluorodecanoic acid	PFDA	335-76-2
	Perfluoroundecanoic acid	PFUnDA	2058-94-8
	Perfluorododecanoic acid	PFDoDA	307-55-1
	Perfluorotridecanoic acid	PFTrDA	72629-94-8
	Perfluorotetradecanoic acid	PFTeDA	376-06-7
Perfluoroalkyl	Perfluorooctane sulphonamide	FOSA	754-91-6
Sulfonamides	N-Methyl perfluorooctane sulfonamide	MeFOSA	31506-32-8
	N-Ethyl perfluorooctane sulfonamide	EtFOSA	4151-50-2
	N-Methyl perfluorooctane sulfonamidoethanol	MeFOSE	2448-09-7
	N-Ethyl perfluorooctane sulfonamidoethanol	EtFOSE	1691-99-2
	N-Methyl perfluorooctane sulfonamidoacetic acid	MeFOSAA	2355-31-9
	N-Ethyl perfluorooctane sulfonamidoacetic acid	EtFOSAA	2991-50-6
Fluorotelomer	4:2 Fluorotelomer sulfonic acid	4:2 FTS	757124-72-4
Sulfonic Acids	6:2 Fluorotelomer sulfonic acid	6:2 FTS	27619-97-2
	8:2 Fluorotelomer sulfonic acid	8:2 FTS	39108-34-4
	10:2 Fluorotelomer sulfonic acid	10:2 FTS	120226-60-0

Table 1 Compounds analysed in the PFAS suite

1.6 Relevant Regulation and Guidance

This PFAS DSI has been developed considering the following legislation and guidance.

- DES, Queensland Auditor Handbook for Contaminated Land, Module 6: Content requirements for contaminated land investigation documents, certifications and audit reports (2018)
- Environmental Protection Act, 1994.
- HEPA (2018) PFAS National Environmental Management Plan (NEMP)
- NEPC (1999) National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended 2013) (ASC NEPM 2013):
 - Schedule A- Recommended general process for assessment of site contamination
 - Schedule B1 Guideline on Investigation Levels for Soil and Groundwater
 - Schedule B2 Guideline on Site Characterisation
 - Schedule B3 Guideline on Laboratory Analysis of Potentially Contaminated Soils
- Standards Australia (AS4482.1-2005) Guide to the sampling and investigation of potentially contaminated soil. Part 1: Non-volatile and semi-volatile compounds
- Standards Australia (AS 4482.2-1999) Guide to the sampling and investigation of potentially contaminated soil, Part 2: Volatile Substances

A summary of guideline values adopted for this investigation is presented in Section 5.0.

2.0 Site Setting

2.1 Site Identification

Proserpine Fire Station is located in central Proserpine and is accessed via Main Street. Site identification details as identified in the PSI (AECOM, 2019) are shown in **Table 2**.

Table 2	Proserpine Fire Station site identification

Item	Details	
Site Address	102 Main Street, Proserpine, 4800	
Registered Site Owner	State of Queensland (Represented by Public Safety Business Agency)	
Registered Address of Site Owner	Public Safety Business Agency, L13 Makerston House, 30 Makerston Street, Brisbane, Queensland, 4000	
Site Occupier	QFES	
Local Government Area	Whitsundays Regional Council	
Zoning	Major Centre	
Future Zoning	No change	
Lot and Plan	Lot 1 / RP706146	
Tenure	Freehold	
Latitude / Longitude	-20.402313, 148.584109	
Site Area	2,023m ²	
Current / Future Site Use	The site is currently a commercial/industrial property (fire station) but has not been operational since 2017. The future site use is not known but considered likely to be commercial/industrial.	
Environmental Management Register (EMR) / Contaminated Land Register (CLR)	A search of the DES EMR and CLR for Lot 1 / RP706146 as part of the PSI (AECOM, 2019) indicated that the site is not included on either the EMR or CLR.	
Environmentally relevant activities or notifiable activities	The PSI did not identify any environmentally relevant activities or notifiable activities at the site.	

2.2 Site Layout and Features

The site layout is detailed on **Figure 2**, **Appendix A**. Site features include a two-storey building in the northern portion of the fire station with the ground floor containing several interconnected rooms (training room, changing rooms and storage areas) on either side of the Engine Room. The second floor contains a desk-based training area. At the rear (south) of the site is a workshop which also contains an in-ground truck pit used for vehicle inspections.

Training activities were historically conducted on the large open space concreted yard located between the fire station and workshop. The PSI (AECOM, 2019) identified that this area was formerly grassed.

A concrete in-ground water tank (Case 4 Pit), with dimensions of 1060 mm diameter x 3840 mm deep and a capacity of 3,390 L, was located in the central area of the site and used for pump testing and water drafting training. The tank has been decommissioned by filling with sand and capped with concrete. A perimeter concrete stormwater drain is located on the north-eastern boundary of the site and a concrete spoon drain bisects through the centre of the fire station building in the north of the site. No stormwater drainage was noted in the centre or southern portions of the site. The surface water flow direction is towards Main Street, to the north of the site.

Underground services including an electrical line and sewer run with a north-south orientation through the approximate area formerly used for foam training exercises, refer to **Figure 2**, **Appendix A**. A vent line was identified along the eastern boundary of the site, however, an underground storage tank was not identified during the service clearance survey. The material used to infill around these services is likely to consist of bedding sands which have the potential to act as preferential pathways for contaminant migration in the unsaturated zone. Backfill around the Case 4 Pit also has the potential to act as a preferential pathway.

There is minimal vegetation on the site, with a small landscaped area adjacent to the north of the workshop and an open grassed area between the workshop and the southern site boundary.

No information was identified in the PSI (AECOM, 2019) on the emplacement of fill at the fire station.

2.3 Surrounding Land Use

The site is surrounded by commercial and industrial businesses. Main Street is located on the northern site boundary. Details of surrounding land uses are provided in **Table 3** below.

Table 3	Proserpine	Fire	Station	surrounding	land	use
	1 100crpmc		oration	Surrounding	iunu	450

Direction	Land Use			
West	Commercial businesses are present adjacent to the western boundary of the site extending to the west of Chapman Street. The nearest residential properties are located approximately 200m west on Dobbins Lane. A rail corridor is located 550m to the west traversing north to south.			
Southwest	The Proserpine Ex-Services Club is adjacent to the site, to the southwest. The nearest residential property is approximately 120 m southwest on the corner of Chapman and Marathon Streets. Residential properties are also present at a similar distance from the site on the western side of Chapman Street.			
South	A commercial property is adjacent to the southern boundary of the site with residential properties beyond, adjoining Marathon Street.			
East	A car dealership is present adjacent to the eastern boundary of the site with other commercial properties, residential dwellings and a church further beyond. A service station is present approximately 300 m to the east of the site.			
Northeast	The site is bounded by Main Street to the northeast, beyond are commercial buildings including the Whitsundays Regional Council and a shopping plaza.			
North / Northwest	Main Street is present to the north and northwest of the site, beyond which are commercial businesses. Approximately 350 m northwest is the Proserpine Sugar Mill (Wilmar Sugar), with the Proserpine River approximately 850 m north of the site.			

2.4 Previous Environmental Investigation

A PFAS PSI was completed in March 2019 (AECOM, 2019). The key findings of this investigation are summarised below.

• Based on historical aerial photographs, the site has been in use since at least the 1940s and the fire station has been present since about 1962 (approximately 57 years). The site had undergone some development prior to this time, however, the previous landuse is not known. The area surrounding the site was progressively developed with commercial and residential properties and recreational landuse.

- Use of the fire station ceased in February 2017 and operations were transferred to a new fire station located in Proserpine. Based on the interview information, firefighting foam was used at the site since at least the late 1980s. Firefighting foam containing PFAS (3M Lightwater) and protein foam was used between the 1990s and approximately 2003. The type of protein foam has not been identified and the potential for this foam to have contained PFAS was uncertain. Since 2003, Solberg foam has been used, which is PFAS-free². There was no information on the types of foam used prior to the late 1980s and the potential for use of other types of foam concentrates containing PFAS cannot be discounted.
- The site is currently vacant and no foams are currently stored. Historically, foams were stored in 20 L drums from the supplier in the southern portion of the main fire station building and occasionally in the workshop at the southern portion of the site. There was no information suggesting that infrastructure (e.g. tanks) storing foam have been present at the site historically.
- Firefighting training using foam was reported to occur historically on-site in the open area in the central portion of the site. This area is now sealed with concrete. The period of the training is not known. Based on anecdotal evidence, foam training exercises may have occurred to unsealed surfaces prior to the placement of concrete and likely continued following hardstand placement. The volume of foam used was not identified, however its use was noted to be limited. There was no information available on the disposal of out of date foam concentrate. No inadvertent releases of foam concentrate were identified.
- PFAS was identified in two water samples collected in 2016 from the Case 4 Pit with concentrations of ∑(PFHxS+PFOS) (0.90 µg/L) and PFOA (0.011 µg/L) detected. Two samples of tap water were also analysed and PFAS was not detected.
- Information on the Queensland Government website³ (dated 4 July 2019) indicates that PFAS was detected in April 2018 in groundwater in one bore used for drinking water purposes, at a concentration that marginally exceeded the drinking water guidelines. This bore was located near Proserpine Showgrounds, approximately 1.6 km southwest from the site. The information on the website stated that a total of 23 other bores were sampled with none of the results exceeding drinking water guidelines for PFAS. The locations of these bores were not known. Information on the Queensland Government website also indicated that PFAS was not detected in surface water samples from the Proserpine River and Lagoon Creek. PFAS was detected in eight samples from stormwater drains but results did not exceed drinking water guideline values.

The website also identifies that the Queensland Government and Council have undertaken direct engagement with residents within the vicinity of the original detection of PFAS. Groundwater use surveys and sampling and analysis of private groundwater bores have been conducted. The website reported 'the results of analysis of private bores showed no results of concern'. The website identifies that bore water from urban areas should not be used unless testing has been undertaken to assess the microbiological and chemical quality of the water.

• A review of the area within 4 km of the site identified the potential for off-site sources of PFAS including a sugar mill, water treatment / treatment plants, service station, bulk fuel storage and other industrial facilities.

² Reported by the manufacturer at https://www.solbergfoam.com/Foam-Concentrates/RE-HEALING-Foam.aspx

³ https://www.qld.gov.au/environment/pollution/management/disasters/investigation-pfas/sites/proserpine

3.0 Environmental Setting

3.1 Climate

A summary of the monthly climate statistics is presented in **Table 4** below, based on information available on the Australian Government Bureau of Meteorology website⁴ for Proserpine Airport for the period 1988 to 2019. Proserpine has a tropical climate, characterised by distinct wet and dry seasons. The wet season occurs between December and April. Mean annual rainfall is 1,426 mm.

Month	Mean maximum temperature (ºC)	Mean minimum temperature (°C)	Mean rainfall (mm)
January	31.5	22.6	297.2
February	31.1	22.8	359.4
March	30.2	21.7	216.5
April	28.7	19.2	120.6
Мау	26.6	15.9	64.9
June	24.7	12.8	39.4
July	24.5	11.2	23.8
August	25.8	11.5	24.1
September	28.5	14.5	18.4
October	30.3	17.4	36.6
November	31.7	19.8	83.7
December	32.2	21.7	165.0

Table 4 Summary of Monthly Climate at Proserpine Airport 1988 to 2019

3.2 Site Topography

Whitsunday Regional Council (WRC) online mapping indicates the site slopes gently down towards the north / north-west, sloping down from an elevation of 13 m to 12.5 mAHD.

Stormwater drainage on the site consists of a perimeter drain on the eastern side of the site and a concrete spoon drain bisecting through the centre of the Fire Station. The surface water flow direction is towards the Main Street in the north.

3.3 Soil Type and Acid Sulfate Soils

Mapping from the ASRIS indicated the soil types underlying the site and surrounding area are Rudosols. Rudosols are usually young soils in the sense that soil forming factors have had little time to pedologically modify parent rocks or sediments. The component soils can vary widely in terms of texture and depth.

Mapping from ASRIS indicated the site is situated within an area where there is a high probability of ASS occurrence. The WRC online mapping indicates the site is classed as 'Land above 5m AHD and below 20m AHD', indicating that ASS may be present at the site. The presence of acidic soil conditions may inhibit the sorption of PFAS onto organic matter, thus increasing mobility (CRC CARE 2018).

⁴ http://www.bom.gov.au/climate/averages/tables/cw_033247.shtml

3.4 Geology

Geological mapping indicates that site is underlain by the Quaternary flood plain alluvium, which comprises clay, silt, sand and gravel.

3.5 Hydrology

Chapman's Lagoon is located approximately 670 m to the east of the site boundary; it appears to drain to the east into a tributary to the Proserpine River. The Proserpine River is located approximately 850 m north of the site boundary and flows in an easterly direction into Repulse Bay. There are no other surface water features within 1 km of the site. Lagoon Creek is located approximately 1.9 km to the west and southwest.

WRC online interactive mapping⁵ indicates the site and adjacent land is not within a flood risk area.

3.6 Hydrogeology

The Groundwater Resources of Queensland 1:2,500,000 mapping indicates the aquifer beneath the site to comprise sedimentary strata, with a yield of 5-15 L/s and salinity of <500 mg/L, the groundwater is noted to be suitable for most purposes. As the main hydrological feature of the area is the Proserpine River located 850 m north of the site, it is considered likely that the regional groundwater flow direction is towards the north.

A search of the NRME registered groundwater bore database was completed in February 2019 (AECOM, 2019) and identified 47 bores within 1 km of the site with 14 bores within 500 m of the site. The registered bore locations are shown on **Figure 2**, **Appendix A**. Borelogs were included in Appendix G of the PSI report (AECOM, 2019). Of the 14 registered bores identified within 500 m of the site, at least seven of these are potentially used for water supply, see **Table 5**.

Bore ID	Distance and Direction	Screened Depth	Additional Comments / Use if Known
RN141173	175m east	11.2 – 12.2m within Proserpine River Alluvium (clayey sand and sand)	For water supply, SWL recorded as 2 mbgl, quality 397 µs/cm.
RN85023	205m south- west	Unclear – however, appears to be 18 – 24m within the Edgecumbe Beds (conglomerate and sandstone)	None provided
RN131776	225m south	11.5 – 13.5m within the Proserpine Alluvium (coarse gravel).	For water supply, quality listed as potable, SWL 2 mbgl
RN63163	270m south- east	6 – 9.5m within the Proserpine Alluvium (sand).	SWL listed as 3.0m BGL
RB131618	320m south- west	7 – 11m within the Proserpine Alluvium (sand and gravel).	For water supply, SWL listed as 5 mbgl
RN131790	430m south- east	9 – 15 within the Proserpine Alluvium (sand and gravel).	For water supply, SWL listed as 4.5 mbgl
RN131792	460m southwest	9 – 12m within the Proserpine Alluvium (sand).	For water supply, quality listed as potable
RN12200050	380m north- east	- Unclear but appears to be 24 – Noted as abando 27.7m within alluvium still useable. Gro chemistry marke	
RN12200225	380m north- east	9.7 – 14.7m alluvium (sand and gravel) Groundwater chem marked on card.	

Table 5 Registered groundwater bores within 500m of Proserpine Fire Station

⁵ https://mapping.whitsundayrc.qld.gov.au/connect/analyst/

Bore ID	Distance and Direction	Screened Depth	Additional Comments / Use if Known	
RN105587	470m southeast	7.0 – 13.0m sandstone	Role listed as water supply	
RN182094	440m north	3.4 – 6.5m within Proserpine River Alluvium (sand)	Role listed as monitoring. SWL 3.2 mbgl	
RN81863	460m north	14 – 22m, aquifer not listed	Role listed as water supply. SWL 3.05 mbgl	
RN182097	500m north- west	6.4 – 9.4m within Proserpine River Alluvium (clay and sand)	Role listed as monitoring. SWL 6.7 mbgl	
RN141103	500m south- west	15.5 – 17.0m with Proserpine River Alluvium (sandy clay)	Role listed as water supply. SWL 15.5 mbgl	

Due to the shallow groundwater table (<6 mbgl) there is the potential for unregistered bores to be present in the area. Bores that are less than 6m deep do not need to be registered.

3.7 Environmental Values

The site is present within the Proserpine River fresh water catchment of the Proserpine River Basin. EPP Water defines the Proserpine River fresh waters as an aquatic ecosystem with high ecological value and outlines environmental values (EVs) associated with the catchment area (DEHP, 2013). The identified EVs for Proserpine River fresh waters include aquatic ecosystems, irrigation, farm supply, stockwater, human consumer, primary recreation, visual recreation, drinking water, industrial use and cultural and spiritual values.

3.8 Groundwater Dependent Ecosystems (GDE) and Environmentally Sensitive Areas

A search of the GDE database indicated the following aquatic ecosystems are present within 4 km of the site: Wetland at Proserpine River – moderate potential GDE. No subterranean and terrestrial GDEs were identified.

4.0 Fieldwork- DSI

4.1 Overview

Fieldwork was completed between July and August 2019 in accordance with the scope and methodology outlined in the SAQP dated 2 April 2019 (AECOM, 2019). The tasks completed are summarised in **Table 6**.

Table 6 Summary of fieldwork

Activity	Dates
Service clearance and drilling of four soil bores (PR_BH01- PR_BH04), collection of soil samples, conversion to groundwater monitoring wells (PR_MW01-PR_MW04), well development	26- 27 July 2019
Advancement of one shallow soil bore (PR_SS01) and collection of soil samples	26 July 2019
Recording of groundwater elevation and collection of groundwater samples from the four newly installed wells (PR_BH01-PR_BH04)	07 August 2019
Surveying of the groundwater wells	07 August 2019

4.2 Sampling Rationale

An overview of the rationale for sampling locations is presented in **Table 7**. The sampling locations are shown on **Figure 2**, **Appendix A**. The coordinates of sampling positions are shown in **Table T1**, **Appendix B**. Photographs taken during the fieldworks are shown in **Appendix C**.

Table 7 Sampling rationale

Location ID	Location/Rationale
PR_BH01 / PR_MW01	Adjacent to the Case 4 Pit and potentially within the area used for training exercises using foam. Along central western portion of the site.
PR_BH02 / PR_MW02	In former grassed area potentially within the area used for training exercises using foam. Located in the central portion of the site.
PR_BH03 / PR_MW03	In former grassed area potentially within the area used for training exercises using foam adjacent to the fire station building. Along the central eastern portion of the site.
PR_BH04 / PR_MW04	In grassed area to the south of the workshop potentially providing hydraulically up-gradient background groundwater quality.
PR_SS1	Shallow soil bore to 0.5 mbgl in grassed area within the area potentially used for foam training exercises using foam.

Due to the ubiquity of PFAS used in a variety of everyday products and the potential for cross contamination during sampling activities, the recommended mitigation practices identified in the NEMP (2018) and Western Australia's Department of Environmental Regulation (2017) were implemented during the sampling program as stipulated in the SAQP (AECOM, 2019). Further details on the QA/QC practices employed are provided in **Appendix G**.

4.2.1 Soil Investigation

Sampling methodologies and details relating to laboratory analysis of samples are described in the SAQP (AECOM, 2019). The soil investigation methodology is described in **Table 8**.

 Table 8
 Soil investigation methodology

Activity/Item	Details
Service location	AECOM obtained on-site utility plans and Dial-Before-You-Dig service before the start of the works. A contractor (Copp and Co) conducted service location and cleared proposed bore locations for services. Concrete coring was conducted at three of the locations (PR_MW01, PR_MW02, PR_MW03). All soil bores were advanced by non-destructive digging (vacuum extraction using a water lance) to 1.5 mbgl to confirm the absence / presence of underground utilities.
Drilling method and target depth	Soil bores (for conversion to groundwater monitoring wells) were advanced with a Geoprobe drilling rig using solid stem augers to the target depth (approximately 6 mbgl). The single shallow soil bore was advanced using a hand auger to the target depth of 0.5 mbgl.
Soil logging	Soil logging was in accordance with the unified soil classification system (USCS) and AS1726-2016. The soil profile(s) encountered are provided in bore logs in Appendix D .
Soil sampling	During drilling, samples were obtained at the depths specified in the SAQP. To reduce the likelihood of cross contamination, soil samples were collected using new nitrile gloves and placed into laboratory prepared PFAS sample containers. Sample jars were filled to the top and securely sealed. The field quality assurance / quality control (QA/QC) samples comprised intra-laboratory duplicate samples, inter-laboratory duplicate samples and rinsate blank samples.
Soil sample preservation	During collection in the field, soil samples were placed in eskies kept cool with bagged ice prior to air transport to the laboratory. Samples were submitted with chain of custody documentation to an accredited laboratory.
Decontamination procedures	The decontamination procedures were performed before initial use of re- useable equipment and after each subsequent use. All reusable sampling equipment was decontaminated between each sample by scrubbing in a solution of Liquinox ⁶ and potable water before being rinsed in PFAS free distilled water. For each day of sampling, following decontamination procedures, a rinsate blank was completed by running laboratory prepared rinsate water over the reusable sampling equipment for collection directly into laboratory prepared sampling containers for analysis. At each sample location, a new set of disposable nitrile gloves was used to directly collect soil samples from the re-useable sampling equipment for placement into the laboratory prepared sampling containers.
Disposal of waste	Waste soil generated during the drilling was disposed of into 205 L drums for temporarily storage in an area nominated by QFES.

⁶ Further information on PFAS-free status of Liquinox is provided at <u>http://technotes.alconox.com/industry/laboratory/manual-lab-cleaning/pfoa-pfos-pfas-alconox-cleaners/</u>

4.2.2 Groundwater Investigation

The groundwater investigation methodology is described in Table 9.

Table 9 Groundwater investigation methodology

Activity	Details
Monitoring well installation	Monitoring well construction comprised a 50 mm diameter uPVC screen and casing with screw fittings, installed in an approximately 150 mm diameter bore. Wells were installed to depths between 5.0 and 6.0 mbgl. Screen length varied between wells dependent on water strike. Screened sections were installed in a gravel filter pack to 0.5 m above the top of the screen and isolated with a 1 m thick bentonite seal. Each well was fitted with a flush mounted gatic and secured into position with concrete. A water tight enviro-cap was installed on the top of each well casing to prevent accidental blockage of the well.
Well development	Wells were developed following installation using a foot pump. The wells were purged until the extracted water was 'clearing' and field parameters were stabilised. Monitoring well construction details can be found in Table T1, Appendix B .
Well gauging	Monitoring wells were gauged using an oil/water interface probe. The results of groundwater level gauging are presented in Table T2, Appendix B . The field sheets and calibration certificates are provided in Appendix E .
Field Parameters	Groundwater physicochemical properties were measured in the field prior to sample collection using a calibrated YSI water quality meter. Groundwater pH, temperature, electrical conductivity, redox potential and dissolved oxygen concentrations were measured. Groundwater physicochemical parameters are presented in Table T3 , Appendix B . Water quality meter calibration certificates are presented in Appendix E .
Groundwater sampling	The groundwater sampling procedure is described in detail in the SAQP (AECOM, 2019). Groundwater samples were collected from each monitoring well using a low flow peristaltic pump in accordance with Australian Standard AS5667.11 (1998) and the AECOM Standard Operating Procedure (SOP). Samples were obtained following stabilisation of field parameters and standing water level. The field QA/QC samples comprised intra-laboratory duplicate samples, inter-laboratory duplicate samples, rinsate blanks and trip blanks.
Sample preservation	During collection in the field, samples were placed into the appropriate laboratory- supplied containers and placed in an esky, which was kept cool with bagged ice. Samples were transferred to a clean fridge before being delivered to the lab via air freight. Samples were submitted with chain of custody documentation to a laboratory NATA accredited for the analysis requested.
Decon- tamination procedures	The oil/water interface probe and peristaltic pump were decontaminated by scrubbing in a solution of Liquinox ⁷ and potable water before rinsing with PFAS-free distilled water between each groundwater well. A rinsate sample was collected from either the interface probe or peristaltic pump each day of sampling. Dedicated tubing was used for during the monitoring of each well to minimise the potential for cross-contamination and appropriate silicone and HDPE tubing was used which is PFAS-free. A new pair of nitrile gloves were used for each well sampled.
Disposal of waste	Purged groundwater was disposed of into a 205 L waste drum, which was temporarily stored in an area nominated by QFES.
Surveying	Surveying of newly installed groundwater wells was completed by Veris. The surveying report is presented in Appendix F .

⁷ Further information on PFAS-free status of Liquinox is provided at <u>http://technotes.alconox.com/industry/laboratory/manual-</u>lab-cleaning/pfoa-pfos-pfas-alconox-cleaners/

4.3 Laboratory Analysis and Quality Assurance / Quality Control

A summary of samples analysed for this Investigation are shown in Table 10. The laboratory analysis was conducted by Australian Laboratory Services (ALS) (primary laboratory) and National Measurement Institute (NMI) (secondary laboratory).

Sample Media	Number of primary samples analysed for PFAS	No of duplicate samples	No of triplicate samples	No of rinsate samples
Soil	14	2	2	3
Groundwater	4	1	1	1

Table 10 Summary of laboratory analyses

4.3.1 **Data Quality Objectives and Analytical Data Validation**

The National Environment Protection (Assessment of Site Contamination) Measure (as amended 2013) (ASC NEPM) Schedule B2 Guideline on-Site Characterisation specifies that the nature and quality of the data produced in an investigation should be determined by the data quality objectives (DQO). As referenced by the ASC NEPM, the DQO process is detailed in the United States Environmental Protection Agency (US EPA, 2006) Guidance on Systematic Planning Using the Data Quality Objectives Process (EPA QA/G-4 : EPA/240/B-06/001), February 2006. The DQOs were specified within the SAQP and are presented in Appendix G.

AECOM has undertaken a review of the laboratory analytical results for guality control purposes; the results of the data validation process are presented in Appendix G and the laboratory quality control reports are included in Appendix H. In summary, while some non-conformances have been identified, these are considered of minor importance and it is concluded that the dataset presented in this report is suitable for use.

5.0 Assessment Criteria

Section 3.7 identified the Proserpine River Basin (fresh water) has the following EVs: aquatic ecosystems, irrigation, farm supply, stockwater, human consumer, primary recreation, visual recreation, drinking water, industrial use and cultural and spiritual values. Guidelines values need to be suitably protection of the above EVs. The guideline values relevant for the site that have been adopted for this investigation are identified in **Table 11**. The guideline values are considered to provide a suitable level of protection for all EVs identified (refer to **Section 3.7**).

Media	Environmental Value	PFAS	Guideline Value
	Human health- industrial /	Σ (PFHxS+PFOS)	20 mg/kg ^A
	commercial landuse	PFOA	50 mg/kg ^A
Soil	Ecosystems- interim soil – ecological indirect exposure (residential) Ecosystems- interim soil – ecological indirect exposure (commercial)	PFOS	0.01 mg/kg ^A 0.140 mg/kg ^A
	Human health- drinking water	Σ (PFHxS+PFOS)	0.07 µg/L ^A
Groundwater		PFOA	0.56 μg/L ^A
		DEOC	0.00023 μg/L ^A
Groundwater	Aquatic ecosystem protection (99% species protection)	PFOS	0.051 µg/L ^в
discharging to surface water /		PFOA	19 μg/L ^Α
surface water	Human health- recreational	\sum (PFHxS+PFOS)	2.0 μg/L ^C
	contact with waters	PFOA	10 µg/L ^с

Table 11	Adopted investigation levels for PFAS
----------	---------------------------------------

Notes:

A - NEMP (HEPA, 2018)

B-It is noted, that the NEMP (HEPA, 2018) 99% species protection guideline value for PFOS (0.00023 µg/L) is below the laboratory limit of reporting (LOR) and that the CSIRO has undertaken work to further review the draft freshwater criteria presented in the HEPA (2018) NEMP. The revised draft guideline values for PFOS were presented in Batley et al., 2018, Application of revised methodologies for default guideline value derivations: PFOS in freshwater at the Society of Environmental Toxicology and Chemistry (SETAC) North America scientific conference in November 2018. AECOM understands, through discussions with CSIRO, that these values are currently being further revised to consider more recent ecotoxicity testing results and the updated statistical interpretation methodology recommended in ANZG (2018). In the interim, both the draft freshwater criteria from the HEPA (2018) NEMP and the draft revised criteria proposed by Batley et al (2018) will be used to evaluate the data.

C- Australian Government National Health and Medical Research Council (2019), Guidance on Per and Polyfluoroalkyl substances in Recreational Water. Values are for recreational activities in natural waters only and not applicable for water extracted to fill swimming pools.

6.0 Results

6.1 Soil Conditions

The bore logs for the four new soil bores (PR_BH01 to PR_BH04 and PR_SS01) drilled in July 2019 are shown in **Appendix D**. Soil bores PR_BH01 to PR_BH04 were drilled to between 5.0 and 6.0 mbgl, with PR_SS01 drilled to 0.5m. Underlying the concrete (where present), the soil conditions consisted of clay fill to approximately 0.8 mbgl, underlain by natural soil consisting of brown firm to stiff sandy or silty clay and silty sand to maximum depth of investigation. The natural soil is considered to be Quaternary Flood Plain Alluvium.

There was no visual or olfactory indication of contamination in the soil samples during the drilling.

6.2 Hydrogeology

6.2.1 Observations during Drilling

Groundwater was encountered within sand horizons in the natural soil in soil bores PR_BH01 to PR_BH04. The depths of the groundwater strikes were between 3.7 and 4.6 mbgl as shown on the bore logs in **Appendix D** and in **Table T1**, **Appendix B**.

6.2.2 Groundwater Elevations and Groundwater Flow Direction

The four groundwater monitoring wells sampled during this investigation were gauged before groundwater samples were collected. The standing water levels (SWLs in metres below top of casing [mbtoc]) were between 3.43 and 3.63 mbtoc. The groundwater elevations were between 9.34 and 9.43 m AHD. The SWLs and groundwater elevations are presented in **Table T2**, **Appendix B**.

The inferred groundwater contours and local groundwater flow direction at the fire station are shown on **Figure 3**, **Appendix A**. Based on the available data, groundwater is inferred to locally flow towards the northwest, west and southwest. The potential for flow towards the east is uncertain as no groundwater elevation data are available.

6.2.3 Water Quality Parameters

Table T3, **Appendix B** presents the field water quality parameter results for groundwater collected during the groundwater monitoring event. The raw data were recorded on the field sheets presented in **Appendix E**. A summary of the water quality results is presented in **Table 12**.

Parameter	Units	No of samples	Minimum	Maximum
рН	-	4	6.22	6.43
Temperature	°C	4	26.0	28.4
Dissolved oxygen	mg/L	4	2.29	4.33
Oxidation reduction potential	mV	4	130.5	162.8
Electrical conductivity	µS/cm	4	195.7	292.6
Total dissolved solids	mg/L	4	127.2	190.2

Table 12 Summary of groundwater quality parameter results

The results indicate that the groundwater is slightly acidic, fresh, moderately oxygenated with mildly reducing conditions.

6.2.4 Groundwater Field Observations

There was no visual or olfactory indication of contamination in the monitoring wells during the groundwater monitoring, including no identification of non-aqueous phase liquids, foaming or odours.

6.3 Analytical Results

6.3.1 Soil

The soil analytical results are presented in **Table T4**, **Appendix B** and on **Figure 4**, **Appendix A**. The laboratory analytical reports are presented in **Appendix H**. PFAS was detected in all 14 soil samples analysed.

There were no exceedances of the human health guideline values for commercial land use in the soil samples analysed. A summary is presented in **Table 13**.

Com- pound	No. of samples analysed	No. of samples >LOR*	Max. concen- tration (mg/kg)	Human health guideline value (mg/kg)	No. of samples exceeding human health guideline value	
∑(PFHxS +PFOS)	14	14	0.201	20	0	
PFOS	14	14	0.196	No guideline value		
PFOA	14	7	0.0032	50	0	
Sum of PFAS	14	14	0.228	No guideline value		

Table 13 Summary of PFAS soil analytical results and assessment with human health guideline values

*LOR = limit of reporting

There was one exceedance of the ecological guideline value for PFOS for indirect exposure for commercial land use. The exceedance occurred in the soil sample from PR_BH03 at 0.5 mbgl (0.196 mg/kg), located in the northeastern portion of the former foam training area. A summary is presented in **Table 14**.

A comparison of the PFAS concentrations to the residential land use ecological guidelines for indirect exposure was also performed, as the southern portion of the site contain open ground/landscaped areas where secondary consumers such as insectivorous birds and mammals may forage. This is a conservative approach, as it is considered that the wildlife would be transient in nature due to the urbanised setting of the site. There were ten exceedances of the ecological guideline value for PFOS for indirect exposure for residential landuse. The exceedances occurred for soil samples from all five soil bores.

Com- pound	No. of samples analysed	No. of samples >LOR*	Max. concen- tration (mg/kg)	Ecological guideline value commercial / residential (mg/kg)	No. of samples exceeding of commercial guideline value	No. of samples exceeding of residential guideline value
∑(PFHxS + PFOS)	14	14	0.201	No guideline value	No guideline value	No guideline value
PFOS	14	14	0.196	0.14 / 0.01	1	10
PFOA	14	7	0.0032	No guideline value	No guideline value	No guideline value
Sum of PFAS	14	14	0.228	No guideline value	No guideline value	No guideline value

*LOR = limit of reporting

6.3.2 Groundwater

The groundwater analytical results for samples collected from monitoring wells are presented in **Table T5**, **Appendix B**. The laboratory analytical reports are presented in **Appendix H**. A summary of the assessment of the results with human health guideline values is presented in **Table 15** below.

Compound	No. of samples analysed	No. of samples >LOR	Maximum concentration (µg/L)	No. of samples exceeding drinking water guideline value	No. of samples exceeding recreational water guideline value
∑(PFHxS+PFOS)	4	4	49.0	4	4
PFOA	4	4	0.55	0	0
Sum of PFAS	4	4	54.1	No guideline	No guideline

Table 15 Assessment of groundwater results with human health guideline values

The groundwater analytical results for \sum (PFHxS+PFOS) and PFOA concentrations are presented on **Figure 5**, **Appendix A**. Groundwater samples from all four monitoring wells exceeded the human health guideline values for drinking water for \sum (PFHxS+PFOS), with the maximum \sum (PFHxS+PFOS) concentration (49.0 µg/L) detected in PR_MW02, located within the former foam training area.

All four of these samples also exceeded the recreational water guideline value.

There was no exceedance of the human health guideline value for drinking water for PFOA concentrations in the groundwater samples from the four new monitoring wells, although one of the samples (PR_MW02 had 0.55 μ g/L) was close to the guideline value (0.56 μ g/L).

There were exceedances of the ecological guideline values for 99% species protection for fresh water for PFOS in all four samples. There were no exceedances of the adopted ecological guideline values for PFOA.

6.3.3 TOPA

TOPA is used to detect certain harder to analyse PFAS precursor compounds that may be present. One soil sample and one groundwater sample were analysed for TOPA with the results summarised in **Table 16**.

Table 16	Summary of TOPA analysis (soil and groundwater)
----------	---

Sample	Units	Sum of 28 PFAS (standard analysis)	Sum of 28 PFAS (TOPA)	Sum of TOP C4-C14 Carboxylates and C4-C8 Sulfonates	% of Sum of 28 TOPA to 28 PFAS standard analysis
PR_BH03_0.5_190727	mg/kg	0.228	0.135	0.088	-41%
PR_MW02_190807	µg/L	54.1	53.7	53.7	-1%

Comparison of the results for the groundwater sample indicates the sum of 28 PFAS by TOPA was 1% lower than the sum of 28 PFAS by standard analysis, which also indicates minor depletion of oxidation by compounds other than PFAS. The result is however within the expected variability range and the comparable results are indicative of a degraded PFAS product that is unlikely to significantly increase or alter through biotransformation or oxidation processes.

7.1 Geological and Hydrogeological Conditions

7.1.1 Soil Conditions

Based on the soil conditions recorded in the bore logs, the subsurface lithology beneath the site generally comprises a shallow layer of fill consisting of reworked natural deposits, underlain by natural sandy or silty clays and silty sand to the maximum depth of the investigation (6.0 mbgl).

7.1.2 Hydrogeology

Measured groundwater elevations indicate the presence of a shallow aquifer, approximately 3.5 mbgl. Based on the limited groundwater elevation data (four locations), the inferred contours indicate groundwater in the central portion of the site could potential locally flow to the northwest, west or southwest. Due to the limited data and the shape and orientation of the site (rectangular shaped with long axis orientated north-south), the potential for groundwater flow to be towards the east is uncertain. As the main hydrological feature is the Proserpine River to the north of the site, the regional groundwater flow direction is considered to be towards the north. Clay is the more dominant soil type present and is likely to have a low hydraulic conductivity that may limit (retard) vertical and lateral migration of PFAS from the unsaturated zone.

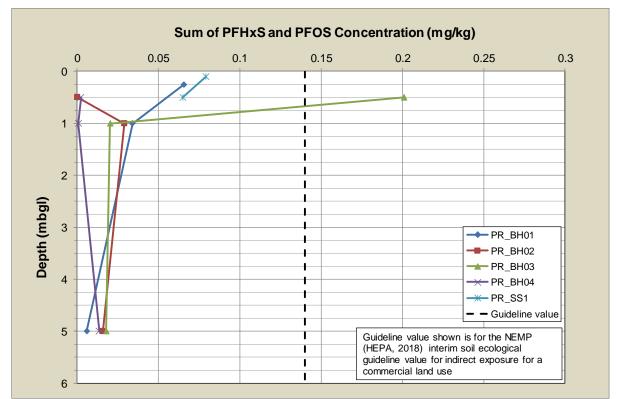
The site is mainly paved with concrete at surface. Prior to the paving, AFFF may have directly infiltrated to the subsurface following direct application during training exercises. Since the placement of concrete, the application of AFFF to surface has the potential to impregnate concrete or seep through joints and cracks in the concrete cover to the underlying fill and natural soil below. The presence of underground services present beneath the concrete and presence of the Case 4 Pit may create preferential pathways through coarse backfill materials for contaminant migration in areas where clay is the main soil type present.

7.2 Soil Analytical Results

Four of the five soil bores drilled as part of this PFAS DSI (PR_BH01, PR_BH02, PR_BH03, PR_SS01) were located in a potential source area (the area formerly used for foam training exercises). The fifth location was a background bore located along the southern site boundary (PR_MW04).

The sample with the highest PFAS concentration (0.20 mg/kg \sum (PFHxS+PFOS)) was collected in the fill material beneath the concrete at 0.5 mbgl at PR_BH03, located in the northern portion of the former foam training area. PFAS concentration in deeper samples from 1.0 mbgl and 5.0 mbgl were an order of magnitude lower (0.02 mg/kg \sum (PFHxS+PFOS)) indicating attenuation with depth.

Table 17 below provides the soil analytical results for $\sum (PFHxS+PFOS)$ for different sample depths. This is shown graphically in **Chart 1**. $\sum (PFHxS+PFOS)$ concentrations in saturated samples collected from 5.0 mbgl are within a similar range, between 0.006 – 0.018 mg/kg. This may reflect PFAS in groundwater adsorbing onto soil within the saturated zone. PFAS is understood to readily adsorb to organic material in an aquifer, and further investigation of the organic carbon content of saturated zone would be required to understanding the potential for sorption by organic material.


Review of the distribution of PFAS concentrations in soil samples indicates concentrations at PR_BH03 were slightly higher compared to other sampling locations, the other samples are considered to be in a similar range at the locations sampled.

The maximum soil \sum (PFHxS+PFOS) concentration detected is two orders of magnitude lower than the guideline value for human health for commercial / industrial landuse. One soil sample had a PFOS concentration (PR_BH03 at 0.5m) that exceeded the guideline level for ecological indirect exposure for commercial / industrial landuse (exceedance by 40%), however, it is noted that this soil sample is located beneath concrete and is unlikely to be accessible to potential ecological receptors. The concentration of PFOS in the deeper sample from 1.0 mbgl was below the commercial/industrial landuse guideline value indicating the PFOS impact is localised to an area near the soil below the concrete.

Depth									
(mbgl)	PR_BH01	PR_BH02	PR_BH02 PR_BH03 PR_BH04 PR_SS1						
	Near southern boundary	Within are							
0.1, 0.25	0.066	N/A	N/A	N/A	0.079	0.066-0.079			
0.5	0.034	0.0003	0.201	0.002	0.065	0.002 - 0.201			
1.0	N/A	0.029	0.020	0.0008	N/A	0.0008 -0.029			
5.0	0.006	0.016	0.018	0.014	N/A	0.006 - 0.018			

Table 17 Soil analytical results for \sum (PFHxS+PFOS)

Notes: Samples from 5.0 mbgl are from the saturated zone. All results in mg/kg, N/A No sample analysed.

$\label{eq:chart1} Concentration of \car{E}(PFHxS+PFOS) with depth in soil bores at Proserpine Fire Station$

Some localised areas of excavations and infilling have been identified in the vicinity of the foam training area including underground structures such as the Case 4 Pit and underground services such as electrical and sewer lines. An underground storage tank may also have been present historically in the eastern portion of the site. The presence of these areas, which are likely to contain coarser material such as sand, may create preferential pathways for the migration of PFAS within the unsaturated zone. The Case 4 Pit and underground storage tank (if present) may extend to the groundwater table at 3.5 mbgl. Backfill around tanks/pits has the potential to form a preferential pathway for the vertical migration of PFAS to groundwater.

7.3 Groundwater Analytical Results

PFAS concentrations in groundwater have been detected in all four groundwater monitoring wells (PR_MW01 to PR_MW04) with the highest concentrations detected at PR_MW02 (49.0 μ g/L Σ (PFHxS+PFOS)) located within the southeastern portion of the former area used for foam training exercises in the central part of the site (refer to **Figure 2**). This suggests a secondary source of PFAS is present in the soil in this area.

As all monitoring wells are located close to site boundaries, there is the potential for PFAS contaminants to migrate off-site at concentrations that exceed human health and ecological guideline values. The extent of PFAS in groundwater has not been established in any direction. Groundwater elevation data indicate that flow in the central portion of the site is likely to be towards the northwest, west and southwest. The potential for PFAS to migrate off-site to the east is uncertain as no groundwater elevation data are available. As the nearest surface water body (Proserpine River) is located to the north and north east of the site, the regional groundwater flow direction is likely to be towards the north.

The Queensland Government website⁸ has reported that in 2018, 24 groundwater samples from bores around Proserpine (locations not known) have been collected and analysed for PFAS with all samples (except one- see **Section 2.4**) reporting PFAS concentrations that did not exceed drinking water guideline values. Although it is not known how close the bores that were sampled are to the site, these results provide information on PFAS concentrations in the wider Proserpine area. The Queensland Government website also indicates analytical results for water samples from the Proserpine River did not detect PFAS above the laboratory limit of reporting. This suggests source areas of PFAS at the site are unlikely to impact the Proserpine River.

7.4 Comparison of PFAS composition in soil and groundwater samples

Table 18 presents a comparison of the compounds detected in soil and groundwater samples.

⁸ https://www.qld.gov.au/environment/pollution/management/disasters/investigation-pfas/sites/proserpine

		Average soil ra	Average		
PFAS	Carbon chain length	0.1-0.5 mbgl (n = 6)	1.0 mbgl (n = 4)	5.0 mbgl (n = 4)	groundwater ratios (n=4)
PFBA	4	0.2%	0%	0%	0.1%
PFBS	4	8.7%	1.3%	0%	1.2%
PFPeS	5	3.9%	1.8%	0%	2.0%
PFPeA	5	1.0%	1.0%	0%	0.4%
PFHxS	6	12.9%	48.6%	5.5%	21.4%
PFHxA	6	4.4%	3.4%	0%	1.6%
6:2 FTS	6	0.1%	0%	0%	0.1%
PFHpS	7	0.3%	4.0%	0%	1.4%
PFHpA	7	0.7%	0.4%	0%	0.4%
PFOS	8	55.9%	32.7%	88.2%	69.2%
PFOA	8	0.9%	2.4%	0%	0.9%
PFNA	8	2.0%	4.4%	1.0%	1.0%
FOSA	8	0.6%	0%	0%	0%
8:2 FTS	8	0.1%	0%	0%	0%
PFDS	10	0.1%	0%	0%	0%
PFDcA	10	0.1%	0%	0%	0%
PFUnDA	11	1.7%	0%	5.3%	0.3%
PFDoDA	12	0.1%	0%	0%	0%
PFTrDA	12	6.2%	0%	0%	0%
PFTeDA	14	0.1%	0%	0%	0%

Table 18 Average PFAS composition in soil and groundwater samples

7.4.1 Soil Profile

The PFAS present in soil samples ranged from short (four perfluorinated carbons) to long chain (14 perfluorinated carbons). The groundwater samples had a smaller range of chain lengths, between four and eleven perfluorinated carbons. The smaller number of chain lengths may be due to the longer chain PFAS having a greater potential to sorb to soil particles compared to shorter chain PFAS, or due to longer chain PFAS having lower solubilities than shorter chain compounds. This indicates the longer chain PFAS have less mobility compared to shorter chain compounds.

Table 18 shows the composition of PFAS in the soil samples from three depth intervals, 0.1 to 0.5 mbgl, 1.0 mbgl and 5.0 mbgl. Comparison of the compounds detected and weighted averages indicates a larger range of compounds are detected in the shallower depth interval (0.1 to 0.5 mbgl) compared to the deeper intervals. For example, no compounds with more than eight perfluorinated carbons were detected in the samples from 1.0 mbgl and only one compound was detected in the samples from 5.0 mbgl.

For the 0.1 to 0.5 m depth interval, PFOS is the main compound present (56%) followed by PFHxS (13%), PFBS (9%) and PFTrDA (6%). At the 1 mbgl depth interval, PFHxS (49%) and PFOS (33%) are the main compounds present while in the deeper soil samples from 5.0 mbgl, PFOS is the main compound (88%) with minor amounts of PFHxS (6%) and PFUnDA (5%). The range in compounds may relate to the use of different types of firefighting foam with different compositions at the site.

7.4.2 Groundwater profile

Table 18 shows the composition of PFAS in the groundwater samples. The composition of PFAS in groundwater is dominated by PFOS (average 69%) and PFHxS (average of 21%), with five other compounds present above 1%.

7.4.3 Summary

Based on **Table 18**, approximately 91% of the mass of PFAS in the soil (based on the sum of 28 PFAS analysed) is comprised of longer chain with more than six perfluorinated carbons. Approximately 96% of the mass of PFAS in groundwater is comprised of longer chain length with more than six perfluorinated carbons.

8.0 Conceptual Site Model - PFAS

8.1 Introduction

8.1.1 Purpose

The purpose of the CSM is to provide an understanding of the nature and extent of contamination impacts and the migration mechanisms, and the exposure pathways by which identified receptors may be exposed to contamination from the Investigation areas. The CSM also serves as a framework to assess risks to human health and ecological receptors, and assists in identifying uncertainties and data gaps. A preliminary CSM was developed as part of the PSI (AECOM, 2019). The CSM has been updated based on the findings of this PFAS DSI.

8.1.2 Definition of source-pathway-receptor linkages

In accordance with national guidance on assessment of contamination (NEPM, 2013), potential risks to receptors are evaluated based on three components:

- **Source**: A potentially hazardous substance that has been released into the environment
- **Receptors**: A person, ecosystem or ecological member potentially at risk of experiencing an adverse response following exposure to the source or derivatives of the source
- **Pathway**: A mechanism by which receptors can become exposed to the source or derivatives of the source.

If all three components are present at an exposure scenario, the source-pathway-receptor linkage is considered complete and a receptor is exposed to a hazard. The risk to the receptor will be based on the consequence of the exposure. However, if one of these three components is missing, there is no direct risk to receptors.

8.1.3 Definition of exposure pathways

In order for a human receptor to be exposed to a chemical contaminant derived from the site, a complete exposure pathway must exist. An exposure pathway describes the course a chemical or physical agent takes from the source to the exposed individual and generally includes the following elements (USEPA, 1989):

- A source and mechanism of chemical release
- A retention or transport medium (or media where chemicals are transferred between media)
- A point of potential human contact with the contaminated media
- An exposure route (e.g. ingestion, inhalation) at the point of exposure.

8.2 Contaminants of Potential Concern

The main contaminants of concern are those with guideline values in the NEMP (HEPA, 2018), PFHxS, PFOS and PFOA.

8.3 Sources

The main source areas of PFAS contamination at the site are summarised below.

8.3.1 Primary Sources

The following activities on the site are considered to have resulted in PFAS impacts to soil, and groundwater:

- Firefighting training activities using AFFF containing PFAS at the former foam training area (see **Figure 2**)
- Leaks and spills of AFFF containing PFAS from storage areas, during product transfer and vehicle maintenance.

8.3.2 Secondary Sources

The following secondary sources were identified could potentially lead to PFAS impacts:

- Surface soil where AFFF containing PFAS was historically discharged to surface
- Unsaturated zone soil beneath potential source zones
- Concrete infrastructure that has been in contact with AFFF or other PFAS
- Sediment in stormwater perimeter and spoon drains.

8.3.3 Off-Site

The following off-site sources have the potential to affect groundwater quality beneath the site:

- Potential for use of AFFF at a service station, approximately 300 m to the east of the site
- Potential for use of AFFF at the sugar mill, approximately 350 m to the north of the site
- Potential for use of AFFF in an industrial area 850 m southwest of the site
- Potential for use of AFFF at a bulk fuel facility 730m to the southwest of the site
- Water treatment plant 950 m to the southwest of the site
- Proserpine sewage treatment plant 1 km to the north of the site.

8.4 Migration Mechanisms

The mechanisms which may have contributed to the migration of PFAS across and from the site include:

- Historical discharge of AFFF containing PFAS to ground surface or leakage from storage infrastructure
- Spilling of AFFF containing PFAS to ground surface during filling and decanting operations
- Sorption of PFAS to soil in areas where AFFFs were historically used, particularly in the firefighting training area in the central area of the site which was previously unpaved
- Localised dispersion of firefighting foams with wind during historical application
- Surface water run-off containing PFAS flowing into surface water and off-site migration within the drainage system
- Leaching of PFAS from soil and infiltration to groundwater in areas where AFFFs were historically used
- Leaching of PFAS from concrete pavements and infiltration to surface water or groundwater
- Lateral and vertical migration of PFAS in groundwater under the influence of groundwater flow and PFAS dispersion
- Migration within backfill to underground services which may act as preferential pathways for PFAS in the unsaturated zone.
- Use of groundwater off-site for irrigation of parks and gardens
- Sorption of PFAS to soil below the groundwater table during migration with groundwater. Sorption to soil slows down the migration of PFAS, but sorbed PFAS may continue to diffuse back into groundwater and act as a secondary source, if conditions are suitable
- Excavation of soil containing PFAS and relocation to other areas on site
- Transport of sediment along stormwater drains and discharging into waterways.

8.5 Receptors and Exposure Pathways

The following potential human and ecological receptors have been identified:

- Personnel who may work at the site in the future, including intrusive construction workers (noting that the site is not currently occupied) and site visitors
- Persons exposed to groundwater extracted from offsite bores for industrial activities, recreational activities, irrigation for parks and gardens and domestic activities
- Recreational users of surface water off-site
- The terrestrial ecosystem (flora and fauna)
- The aquatic ecosystems of nearby waterways (Proserpine River).

The following potential exposure pathways have been identified for human receptors:

- Dermal contact and/or incidental ingestion of PFAS impacted soil, including dust inhalation
- Persons drinking PFAS impacted groundwater
- Dermal contact and/or incidental ingestion of PFAS impacted groundwater, surface water and sediment (in drains)

The following potential exposure pathways have been identified for ecological receptors:

• Ecological receptors in direct contact with PFAS impacted soil, sediment and surface water.

8.6 Assessment of Exposure Pathways

An assessment of the exposure pathways for the site is presented in **Table 19**. A figure showing the key features of the CSM is presented as **Figure 6**.

Table 19 Proserpine Fire Station PFAS CSM

Primary Source	Secondary Sources	Transport Mechanism	Exposure Pathways	Receptor	Likelihood of complete linkage	Comments
On-Site areas where firefighting foams have been	PFAS in soil	Excavation of soil during construction / maintenance activities	Human health: incidental ingestion of soil, direct contact with soil (dermal contact and dust inhalation)	Intrusive maintenance / landscaping workers	Unlikely	Considered unlikely due to use of occupational health and safety controls and non-exceedance of health guideline values for PFAS in soil for a commercial landuse.
discharged or spilt to the environment. Off-Site areas where firefighting foams have been discharged or spilt to the environment			Ecological: ingestion of plants and terrestrial biota by higher order ecological receptors	Terrestrial ecosystem	Unlikely	Considered unlikely due to rare exceedance of indirect ecological guideline value for commercial land use. Mitigated by the lack of open space / landscaped areas. The majority of the fire station is paved which prevents access to the subsurface soils. Additionally, mitigated by minimal vegetation to be ingested and subsequently consumed by higher order predators.
		General QFES activities	Human health: incidental ingestion of soil, direct contact with soil (dermal contact and dust inhalation)	Site workers ⁹ and visitors	Unlikely	Considered unlikely due to non- exceedance of health guideline values for PFAS in soil for commercial landuse.
	PFAS in concrete lined pits and drains	Leaching of PFAS within concrete structures to soil,	Human health - Incidental ingestion or contact with soil, groundwater or surface water.	Site workers	Unlikely	Considered unlikely due to use of occupational health and safety controls and as soil and groundwater below concrete is not likely to be accessible.

⁹ It should be noted that the fire station is not currently occupied.

Primary Source	Secondary Sources	Transport Mechanism	Exposure Pathways	Receptor	Likelihood of complete linkage	Comments
		groundwater and surface water.	Ecological – uptake and bioaccumulation.	Terrestrial ecosystem	Unlikely	Considered unlikely as soil below the concrete is not likely to be used by ecological receptors. There is a lack of open space / landscaped areas across the site and minimal vegetation to be ingested.
	PFAS in groundwater	Groundwater transport in aquifer followed by extraction and	Human health: direct ingestion or incidental ingestion or direct contact with groundwater (off-Site)	Off-Site groundwater users	Possible	Considered possible because the PSI identified 47 registered abstraction bores surrounding the site, which includes bores used for water supply. Groundwater beneath the site is fresh
		use for domestic, recreational, industrial uses and irrigation (parks and gardens)	Uptake and bioaccumulation in terrestrial biota	Flora and fauna	Possible	and suitable as a potable water source. The nearest known bore used for water supply is located 175 m east of the site and is screened in the shallow aquifer. The potential for groundwater to flow towards the east is uncertain. The groundwater beneath the site is fresh. Additional unregistered bores may also be present in the surrounding area. In 2018 the Queensland Government and the Council tested private bores across Proserpine and reported that the results showed 'no results of concern'. The locations of the bores that were sampled are not known.
		Groundwater transport in aquifer followed by extraction for stockwatering	Livestock: direct ingestion or incidental ingestion or direct contact with groundwater (off-site)	Livestock	Unlikely	Considered unlikely as the fire station is located in an urban areas and groundwater in the vicinity of the sites is unlikely to be used for stock watering purposes

Primary Source	Secondary Sources	Transport Mechanism	Exposure Pathways	Receptor	Likelihood of complete linkage	Comments
	PFAS in surface water	Surface water transport via overland flow into on- and off-site drains that discharge	Human health: direct or incidental ingestion or direct contact with off-site surface water (i.e. surface water, drainage overland flow water).	Recreational users	Unlikely	Considered unlikely as the results of a 2018 investigation by Queensland Government and Council did not detect PFAS in samples collected from the Proserpine River. PFAS concentrations in stormwater drain samples did not
		into channels and potentially the Proserpine River	Ecological: direct exposure as well as ingestion of biota by higher order ecological receptors	Aquatic ecosystem	Unlikely	exceed drinking water guideline values. However, it is noted these sampling locations are not known.
	Accumulation of PFAS in creek sediment	Dispersion via surface water	Human health: incidental ingestion or direct contact with sediment (off-site). Direct ingestion of aquatic biota	Recreational users	Possible	Considered possible as runoff from the site will enter surrounding stormwater channels which drain to Proserpine River. However, the results of a 2018 investigation by Queensland Government
			Ecological: direct exposure, as well as ingestion of biota by higher order ecological receptors	Aquatic ecosystem	Possible	and Council did not detect PFAS in samples collected from the Proserpine River.

9.0 Conclusions

The key findings of the PFAS DSI are presented below.

- Groundwater elevations in August 2019 indicated a shallow aquifer is present beneath the site. Depth to groundwater was approximately 3.5 mbgl. In the former firefighting training area in the eastern central portion of the site, groundwater was inferred to flow locally in a north westly to south westly direction. The potential for groundwater to flow towards the east was uncertain. The regional groundwater flow direction is likely to be to the north, towards the Proserpine River, which is the main hydrological feature of the area.
- The main PFAS compounds present in the soil samples analysed were PFHxS and PFOS. Σ(PFHxS+PFOS) and PFOA concentrations in 14 soil samples analysed from the five soil bores did not exceed NEMP (HEPA, 2018) health guideline values for commercial landuse. The concentration of PFOS in one soil sample (PR_BH03 at 0.5 mbgl at 0.2 mg/kg) exceeded the NEMP (HEPA, 2018) interim soil ecological PFOS guideline value for indirect exposure for commercial landuse. The maximum PFOS concentration was detected in a sample of fill from the area formerly used for firefighting training in the central portion of the site. As the majority of the site is covered by concrete, the potential for ecological receptors to be exposed to PFOS in the site soil is considered to be low. The soil samples analysed indicated that soil PFAS concentrations decreased with increased depth, with higher PFAS concentrations in the nearsurface fill material.
- The main PFAS compounds detected in groundwater were PFHxS and PFOS. Elevated ∑(PFHxS+PFOS) concentrations (i.e. exceeding NEMP (HEPA, 2018) drinking water and recreational water quality guideline values) were detected in groundwater samples from all four newly installed monitoring wells. The monitoring well with the highest ∑(PFHxS+PFOS) concentrations (49.0 µg/L, PR_MW02), is located in the southeastern portion of the area previously used for firefighting training exercises.
- The laboratory analytical technique for TOPA is used to detect certain harder to analyse PFAS
 precursor compounds that may be present. The results of TOPA analysis on one soil and one
 groundwater sample did not indicate the presence of PFAS precursors. The results indicated a
 degraded PFAS product that is unlikely to significantly increase or alter through biotransformation
 or oxidation processes.
- The lateral extent of the area of groundwater with elevated concentrations of PFHxS and PFOS is uncertain and potentially extends off-site in all directions at concentrations in excess of human health and ecological guideline values. Commercial property is present adjacent to the site to the south. Residential properties are located beyond the commercial property, approximately 100 m south of the southern site boundary. The Proserpine River is located approximately 850 m to the north of the site.
- Information on the Queensland Government website indicates that water supply bores across
 Proserpine were sampled and analysed for PFAS in 2018. Concentrations in one bore located
 1.6 km southwest of the site (at Proserpine Showgrounds) exceeded drinking water guidelines for
 PFAS, however concentrations in samples from 23 other bores in Proserpine did not exceed
 drinking water guideline values. Although it is not known how close the bores that were sampled
 are to the site, these results provide information on PFAS concentrations in the wider Proserpine
 area. PFAS was not detected in surface water samples from the Proserpine River and Lagoon
 Creek. This suggests source areas of PFAS at the site are unlikely to impact the Proserpine
 River.
- Based on information provided as part of the PSI, the source of the PFAS detected in soil and groundwater samples is considered likely to be related to the historical firefighting training practices at the fire station, and spills from storage containers, product transfer and other maintenance activities.

Based on these key findings, the PFAS conceptual site model developed for the PSI has been updated. A number of possibly complete exposure pathways for PFAS sourced from the fire station to impact off-site human and ecological receptors have been identified. The significance of these

potentially complete source-pathway-receptor linkages is uncertain and further investigation is required to understand the potential risks to off-site receptors.

10.0 References

AECOM (2019), Preliminary Site Investigation and Sampling, Analysis and Quality Plan, QFES, April 2019.

Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2018) at <u>https://www.waterquality.gov.au/anz-guidelines/guideline-values/default</u>

Australian Government, National Water Commission 2012, Minimum Construction Requirements for Water Bores in Australia, Edition 3, February 2012.

Australian Government (2019) National Health and Medical Research Council (2019), Guidance on Per and Polyfluoroalkyl substances in Recreational Water.

Batley et al., 2018, Application of revised methodologies for default guideline value derivations: PFOS in freshwater, presented at the Society of Environmental Toxicology and Chemistry (SETAC) scientific conference in November 2018

CRC CARE, 2018, Practitioner guide to risk-based assessment, remediation and management of PFAS site contamination, Technical Report No. 43, CRC Care 2018

Department of Agriculture and Fisheries (2019), Fisheries Act 1994

Department of Environment (1998), Draft Guidelines for the Assessment and Management of Contaminated Land in Queensland

Department of Environment and Heritage Protection (2013), Environmental Protection (Water) Policy 2009 Proserpine River, Whitsunday Island and O'Connell River Basins Environmental Values and Water Quality Objectives, August 2013

Department of Environment and Science, 2018, Queensland Auditor Handbook for Contaminated Land, Module 6: Content requirements for contaminated land investigation documents, certifications and audit reports, ESR/2018/4224v2.01, 2018.

Department of Environment and Science (2019), Environmental Protection Act 1994

Government of Western Australia Department of Environmental Regulation, 2017. Interim Guideline on the Assessment and Management of Perfluoroalkyl and Polyfluoroalkyl Substances, Version 2.1 (20 January 2017).

Heads of Environmental Protection Agencies Australian and New Zealand, 2018, PFAS National Environmental Plan (NEMP), January 2018.

NHMRC (2019) Guidance on Per and Polyfluoroalkyl Substances (PFAS) in Recreational Water.

National Environment Protection Council (NEPC), 1999. National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended 2013.

Standards Australia (AS4482.1-2005) Guide to the sampling and investigation of potentially contaminated soil. Part 1: Non-volatile and semi-volatile compounds.

Standards Australia (AS 4482.2-1999) Guide to the sampling and investigation of potentially contaminated soil, Part 2: Volatile Substances.

Standards Australia, 1998a. Water quality – Sampling. Part 11: Guidance on sampling of groundwaters. Australian Standards, AS5667.11, 5 April 1998.

US EPA (2002), Guidance on Environmental Data Verification and Data Validation, November 2002.

US EPA (2006) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA QA/G-4 (EPA 240/B-06/001).

Web References in Report

https://www.qld.gov.au/environment/pollution/management/disasters/investigationpfas/sites/proserpine Accessed on 12 September 2019. https://mapping.whitsundayrc.qld.gov.au/connect/analyst/ Accessed on 12 September 2019.

https://www.solbergfoam.com/Foam-Concentrates/RE-HEALING-Foam.aspx Accessed on 14 October 2019.

http://technotes.alconox.com/industry/laboratory/manual-lab-cleaning/pfoa-pfos-pfas-alconox-cleaners/ Accessed on 16 October 2019.

11.0 Limitations

AECOM Australia Pty Ltd has prepared this report in accordance with the usual care and thoroughness of the consulting profession for the use of Queensland Fire and Emergency Services and only those third parties who have been authorised in writing by AECOM to rely on the report.

The report is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report.

The report is prepared in accordance with the scope of work and for the purpose outlined in the Proposal dated 23 May 2019.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties.

The methodology adopted and sources of information used by AECOM are outlined in the report.

Where this report indicates that information has been provided to AECOM by third parties, AECOM has made no independent verification of this information unless required as part of the agreed scope of work. AECOM assumes no liability for any inaccuracies in or omissions to that information.

This report was prepared between 19 August 2019 and 23 October 2019. The information in this report is considered to be accurate at the date of issue and is in accordance with conditions at the Site and surrounding areas at the dates sampled. Opinions and recommendations presented herein apply to the Site and surrounding areas existing at the time of our investigation and cannot necessarily apply to changes to Site and surrounding areas of which AECOM is not aware and has not had the opportunity to evaluate. This document and the information contained herein should only be regarded as validly representing the Site and surrounding area conditions at the time of the investigation unless otherwise explicitly stated in a preceding section of this report. AECOM disclaims responsibility for any changes that may have occurred after this time.

Except as required by law, no third party may use or rely on this report, unless otherwise agreed by AECOM in writing. Where such agreement is provided, AECOM will provide a letter of reliance to the agreed third party in the form required by AECOM.

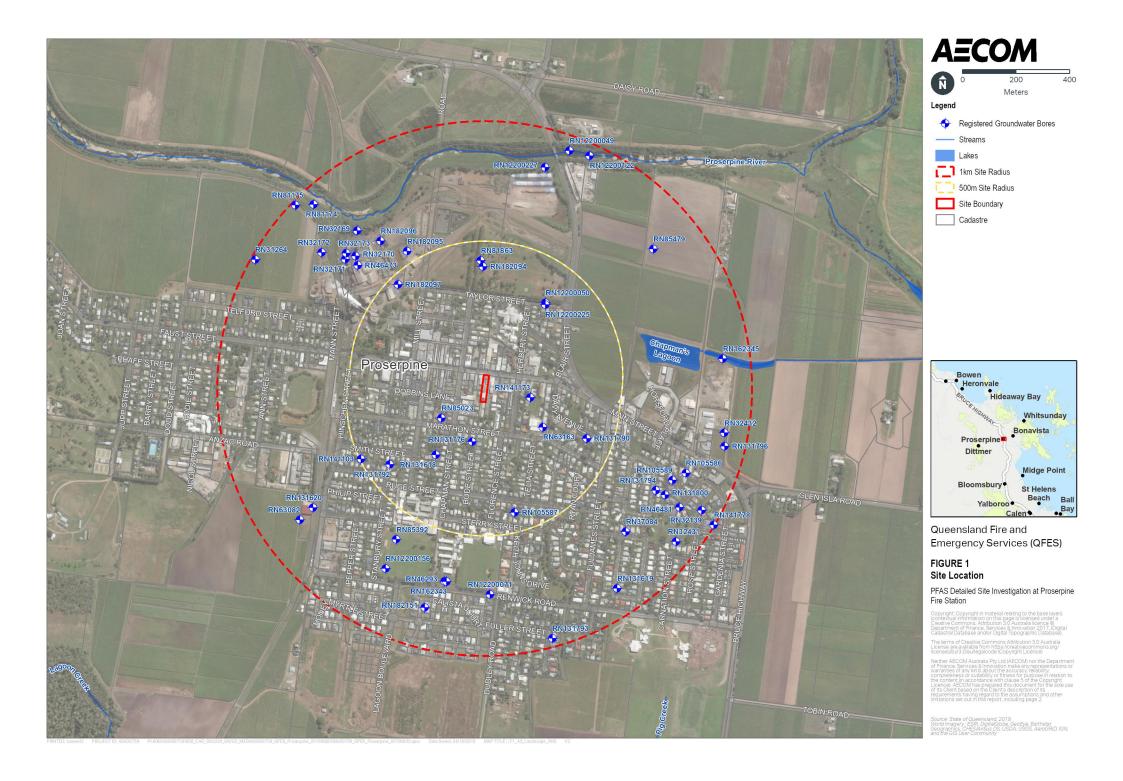
To the extent permitted by law, AECOM expressly disclaims and excludes liability for any loss, damage, cost or expenses suffered by any third party relating to or resulting from the use of, or reliance on, any information contained in this report. AECOM does not admit that any action, liability or claim may exist or be available to any third party.

AECOM does not represent that this report is suitable for use by any third party.

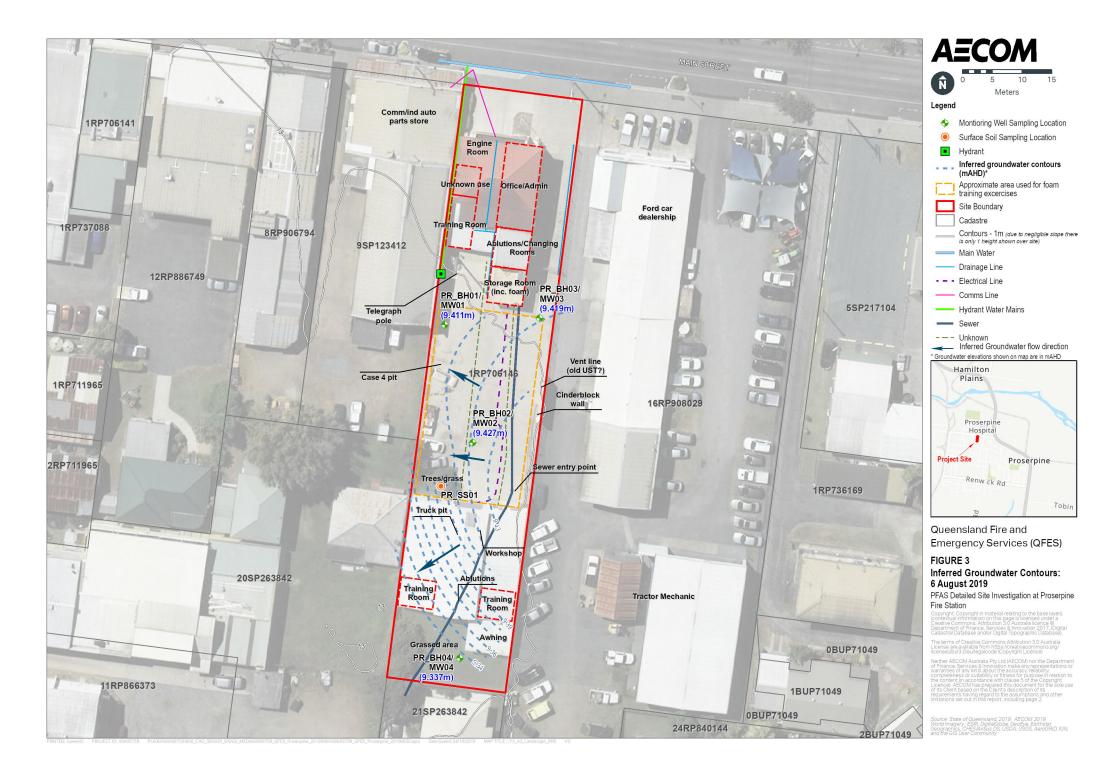
Except as specifically stated in this section, AECOM does not authorise the use of this report by any third party.

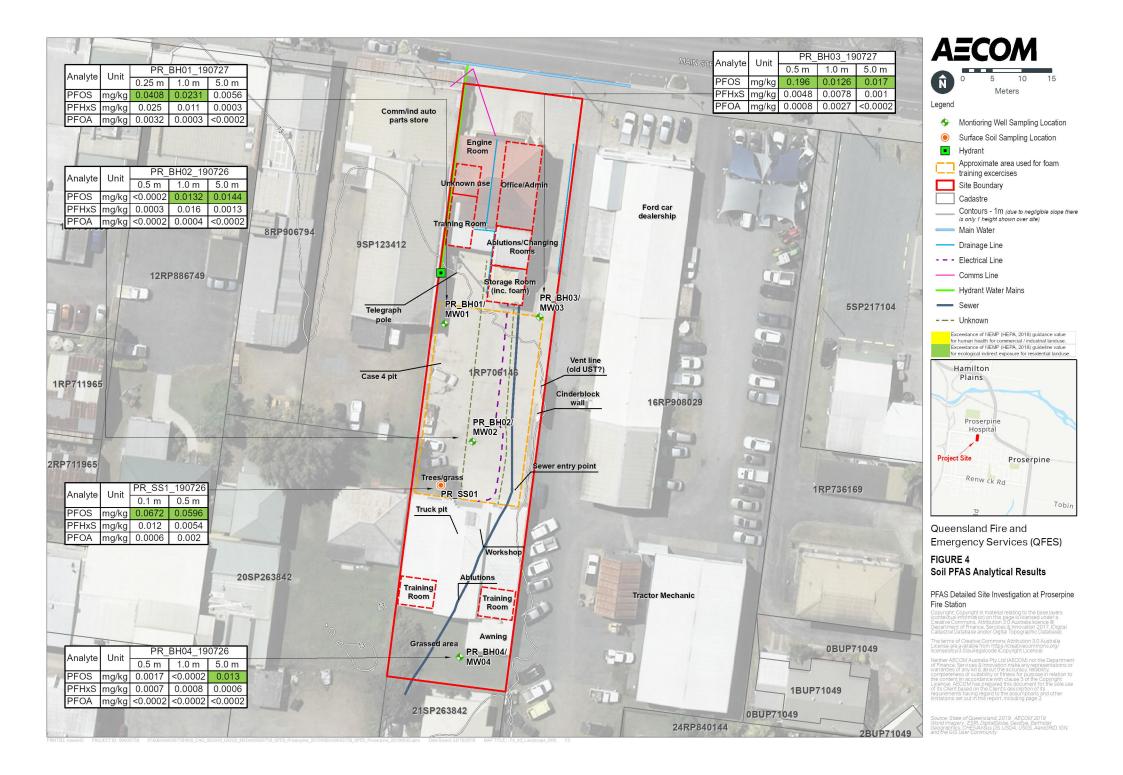
It is the responsibility of third parties to independently make inquiries or seek advice in relation to their particular requirements and proposed use of the relevant property.

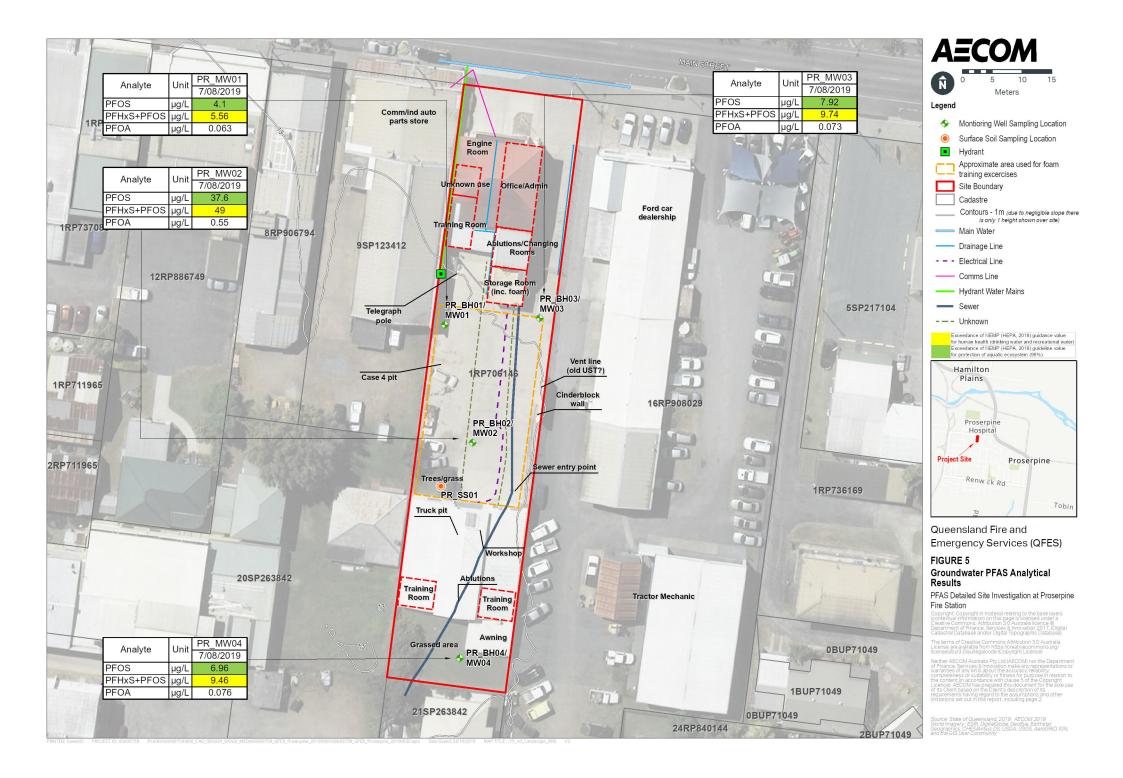
List of Appendices

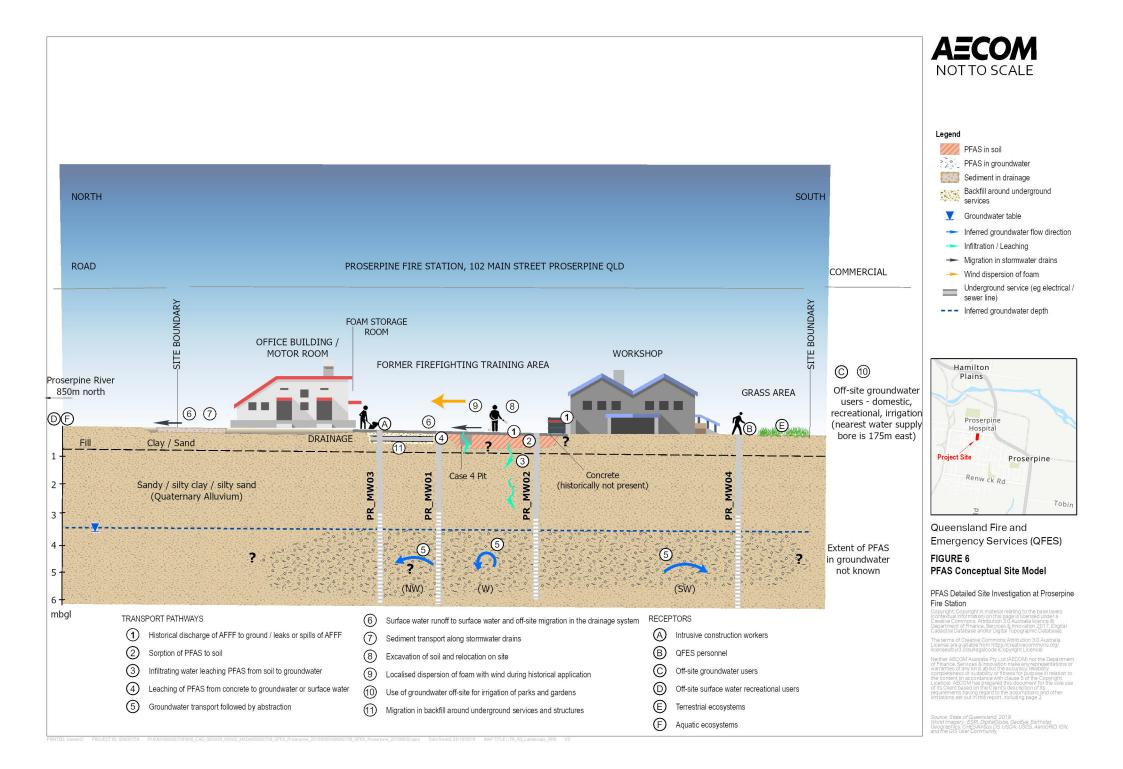

- Appendix A Figures
- Appendix B Tables
- Appendix C Photographs
- Appendix D Bore Logs
- Appendix E Fieldsheets and Calibration Certificates
- Appendix F Surveying Report
- Appendix G Analytical Data Validation
- Appendix H Laboratory Analytical Reports

Appendix A


Figures


Appendix A Figures


Figure 1	Site Location
Figure 2	Site Layout and Sampling Locations
Figure 3	Inferred Groundwater Contours: 6 August 2019
Figure 4	Soil PFAS Analytical Results
Figure 5	Groundwater PFAS Analytical Results
Figure 6	PFAS Conceptual Site Model



Appendix B

Tables

B-1

Appendix B Tables

- Table T1
 Well Construction Details
- Table T2 Groundwater Gauging Results
- Table T3 Groundwater Quality Parameter Results
- Table T4 Soil Analytical Results
- Table T5 Groundwater Analytical Results

Location ID Area	Date of Installation	Easting	Northing	Top of Casing Elevation (mAHD)	Cover	Top of Casing Elevation (m AHD)	Drilled Depth (m)	Top of screen (mbgs)	Water Strike (mbgs)	Lithology of screened section
PR_BH01/MW01	27/07/2019	665286.4	7743196.3	12.999	Gatic	13.056	5.0	3.0	3.9	SAND to CLAY
PR_BH02/MW02	26/07/2019	665291.1	7743176.4	13.059	Gatic	13.152	6.0	3.0	3.7	Sandy CLAY to Silty SAND
PR_BH03/MW03	27/07/2019	665302.4	7743197.4	12.851	Gatic	12.918	5.7	3.7	3.7	Silty SAND
PR_BH04/MW04	26/07/2019	665288.9	7743140.2	12.955	Gatic	12.992	5.6	4.0	4.6	Silty SAND to Silty CLAY

m' is metres

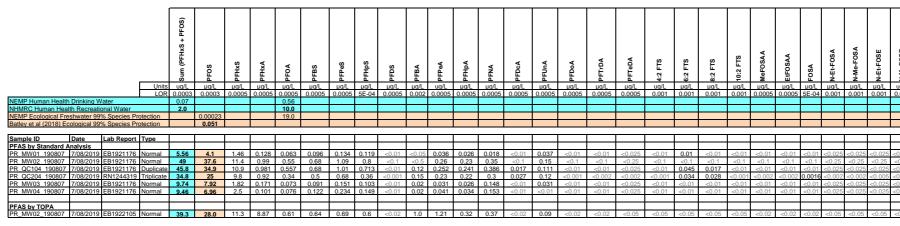
mAHD' is metres above Australian height datum

mbgs' is metres below ground surface

Well ID	Easting	Northing	Top of Casing Elevation (mAHD)	Gauging Date	Total Depth (mbtoc)	Depth to Water (mbtoc)	Corrected Groundwater Elevation (mAHD)
PR_MW01	665286.4	7743196.3	12.999	6/08/2019	4.7	3.588	9.411
PR_MW02	665291.1	7743176.4	13.059	6/08/2019	4.9	3.632	9.427
PR_MW03	665302.4	7743197.4	12.851	6/08/2019	5.8	3.432	9.419
PR_MW04	665288.9	7743140.2	12.955	6/08/2019	5.4	3.618	9.337

m' is metres mAHD' is metres above Australian height datum mbtoc' is metres below top of casing

Well ID	Date	рН	Temperature (°C)	Electrical Conductivity (µS/cm)	Total Dissolved Solids (mg/L)	Dissolved Oxygen (mg/L)	Oxidation Reduction Potential (mV)*
PR_MW01	6/08/2019	6.43	26.7	195.7	127.2	4.27	146.9
PR_MW02	6/08/2019	6.41	28.4	239.1	155.4	4.33	134.1
PR_MW03	6/08/2019	6.28	27.6	254.8	165.6	3.26	130.5
PR_MW04	6/08/2019	6.22	26	292.6	190.2	2.29	162.8


°C is degrees Celsius µS/cm is microsiemens per centimetre mg/L is milligrams per litre

mV is millvolt

	Γ																															s
																																fe
																																ž
																																õ
																																te l
		-																														ů,
		(so																														C14 ates
		Ĕ																														0 8
		÷																														정복
		ŝ																										~			AS	o (0
		Ť																						<	~		S	ŝ	Ж	Ш, Ц	Ë.	2 %
		2		6	۲			6	Ś			~	∢		۲	∢	∢	۲.	₹	Ś	ŝ	ŝ	Ĕ	ŝ	ĭ.		ö	E I	ö	ö	Ę.	24
		Ē	SC	ž	¥	ð	ŝ)e	÷	8	BA	ē	ê	≸	Ř	Ľ.	Ř	Ę	le l	E	E	E	8	e B	ö	s	2	<u>-</u>	7	e l	Ĕ	Ĕ
		j,	ŭ	Ē	Ē	й,	μ.	Ē.	μ.	μ.	Ξ.	μ.	Ē.	μ.	Ē	Ĩ,	Ē	L.	μ.	2	5.2	32	0:2	Ae l	5	ö	7	÷	7	÷	3	Sum of TOF and C4-C8 (
	Units	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	mg/kg	
			0.0002				0.0002		0.0002	0.0002	0.001			0.0002			0.0002	0.0002								0.0002		0.0005		0.0005		
PFAS NEMP Human Health Industrial/Commercial		20				50						0.0002																				
PFAS NEMP Interim Soil Ecological Residential			0.01																													
PFAS NEMP Interim Soil Ecological Commercial/In	lustrial		0.14																													
Sample ID Date Lab Report	Туре																															
PFAS by Standard Analysis																																
PR_SS1_0.1_190726 26/07/2019 EB1919842	Normal	0.0792	0.0672	0.012	0.0012	0.0006	< 0.0002	0.0004	0.0003	0.0003	< 0.001	0.0004	< 0.0002	< 0.0002	< 0.0002	0.0008	< 0.0002	0.0018	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0002	< 0.0002	0.0024	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0874	-
PR_SS1_0.5_190726 26/07/2019 EB1919842	Normal	0.065	0.0596	0.0054	0.0037	0.002	< 0.0002	0.0002	< 0.0002	< 0.0002	< 0.001	0.0012	0.0013	0.0008	< 0.0002	0.001	< 0.0002	0.0004	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0002	< 0.0002	<0.0002	<0.0005	< 0.0005	< 0.0005	< 0.0005	0.0756	-
PR_BH01_0.25_190727 27/07/2019 EB1919842	Normal	0.0658														0.0420	0.0011	0.0616	0.0008											<0.0005		
PR_BH01_1.0_190727 27/07/2019 EB1919842		0.0050	0.0408	0.025	0.0085	0.0032	0.0004	0.0008	0.0009	0.0004	0.002	0.0079	0.0038	0.0026	0.001	0.0139			0.0000	< 0.0005	0.0012	0.001	< 0.0005	< 0.0002	< 0.0002	0.0016	< 0.0005	< 0.0005	< 0.0005	<0.000J	0.178	-
	Normal		0.0408	0.025	0.0085	0.0032	0.0004		0.0009	0.0004 < 0.0002	0.002 <0.001	0.0079 0.0013	0.0038	0.0026	<0.0001	< 0.0002	< 0.0002	< 0.0002	< 0.0005	<0.0005	0.0012 <0.0005	0.001 <0.0005	<0.0005	<0.0002	<0.0002 <0.0002	0.0016 <0.0002	<0.0005	<0.0005 <0.0005	<0.0005 <0.0005		0.178	-
PR_BH01_5.0_190727 27/07/2019 EB1919842		0.0341		0.025 0.011 0.0003						0.0004 <0.0002 <0.0002	0.002 <0.001 <0.001				<0.0002 <0.0002	<0.002 <0.0002 0.0015	<0.0002 <0.0002	<0.0002	<0.0005 <0.0005	<0.0005 <0.0005 <0.0005	0.0012 <0.0005 <0.0005	0.001 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005	<0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002	0.0016 <0.0002 <0.0002	<0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005	10.0000			-
PR BH02 0.5 190726 26/07/2019 EB1919842	Normal Normal	0.0341	0.0231				0.0003 <0.0002	0.0006	0.0008	< 0.0002	< 0.001	0.0013	0.0002	0.0005	< 0.0002	< 0.0002	<0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002	<0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005	0.0012 <0.0005 <0.0005	0.001 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005	<0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002	< 0.0002	<0.0005	<0.0005 <0.0005 <0.0005 <0.0005	< 0.0005	<0.0005 <0.0005 <0.0005	0.0403	-
PR_BH02_0.5_190726_26/07/2019_EB1919842 PR_BH02_1.0_190726_26/07/2019_EB1919842	Normal Normal	0.0341 0.0059 0.0003	0.0231		0.0022 <0.0002		0.0003 <0.0002 0.0014	0.0006 <0.0002	0.0008	< 0.0002	<0.001 <0.001	0.0013	0.0002	0.0005	< 0.0002	< 0.0002	<0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002	<0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005	0.0012 <0.0005 <0.0005 <0.0005	0.001 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002	< 0.0002	<0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005	<0.0005 <0.0005 <0.0005	0.0403	-
PR BH02 0.5 190726 26/07/2019 EB1919842 PR_BH02_1.0_190726 26/07/2019 EB1919842 PR_QC101 190726 26/07/2019 EB1919842	Normal Normal Normal Duplicate	0.0341 0.0059 0.0003 0.0292	0.0231 0.0056 <0.0002 0.0132 0.0142		0.0022 <0.0002 0.0004	0.0003 <0.0002 <0.0002	0.0003 <0.0002 0.0014 0.0014 0.0012	0.0006 <0.0002 0.0006 0.0016 0.0016	0.0008 <0.0002 <0.0002	< 0.0002	<0.001 <0.001	0.0013	0.0002	0.0005 <0.0002 <0.0002 0.0011 0.0012	< 0.0002	< 0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.0012 <0.0005 <0.0005 <0.0005 <0.0005	0.001 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002	< 0.0002	<0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.0403	-
PR BH02 0.5 190726 26/07/2019 EB1919842 PR BH02 1.0 190726 26/07/2019 EB1919842 PR QC101 190726 26/07/2019 EB1919842 PR QC201 190726 26/07/2019 EB1919842 PR QC201 190726 26/07/2019 EN12426617	Normal Normal Normal Duplicate Triplicate	0.0341 0.0059 0.0003 0.0292 0.0298 0.031	0.0231 0.0056 <0.0002 0.0132 0.0142 0.015	0.0003 0.0003 0.016 0.0156 0.016	0.0022 <0.0002 0.0004 0.0012	0.0003 <0.0002 <0.0002 0.0004	0.0003 <0.0002 0.0014 0.0014	0.0006 <0.0002 0.0006 0.0016 0.0016	0.0008 <0.0002 <0.0002 0.0008	< 0.0002	<0.001 <0.001 <0.001 <0.001	0.0013 <0.0002 <0.0002 <0.0002	0.0002	0.0005 <0.0002 <0.0002 0.0011 0.0012 0.0012	< 0.0002	< 0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.002	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.001	0.0012 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.001	0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.001	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.002	< 0.0002	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.005	0.0403 0.0357 0.036 0.0361	
PR BH02 0.5 190726 26/07/2019 EB1919842 PR BH02 1.0 190726 26/07/2019 EB1919842 PR QC101 190726 26/07/2019 EB1919842 PR QC201 190726 26/07/2019 EB1919842 PR QC201 190726 26/07/2019 RN1242611 PR_BH02_5.0 190726 26/07/2019 BE1919842	Normal Normal Normal Duplicate Triplicate Normal	0.0341 0.0059 0.0003 0.0292 0.0298 0.031	0.0231 0.0056 <0.0002 0.0132 0.0142 0.015 0.0144		0.0022 <0.0002 0.0004 0.0012 0.001 0.0012 <0.0002	0.0003 <0.0002 <0.0002 0.0004 0.0004 <0.001 <0.0002	0.0003 <0.0002 0.0014 0.0014 0.0012 0.0014 <0.0002	0.0006 <0.0002 0.0006 0.0016 0.0016 0.0013 <0.0002	0.0008 <0.0002 <0.0002 0.0008 <0.0008 <0.001 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.001 <0.001 <0.001 <0.001 <0.001	0.0013 <0.0002 <0.0002 <0.0002 <0.002 <0.002 <0.002	0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.001 <0.0002	0.0005 <0.0002 <0.0002 0.0011 0.0012 0.0012 0.0004	< 0.0002	< 0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.002 <0.002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.002 <0.002 <0.0002	<pre><0.0008 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.002 <0.0005</pre>	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.001 <0.0005	0.0012 <0.0005 <0.0005 <0.0005 <0.0005 <0.0001 <0.0005	0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0001 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0002 <0.002 <0.0005	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.002 <0.002	< 0.0002	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.005 <0.005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.005 <0.0005	0.0403 0.0357 0.036 0.0361 0.0161	
PR BH02 0.5 190726 26/07/2019 EB1919842 PR BH02 1.0 190726 26/07/2019 EB1919842 PR QC101 190726 26/07/2019 EB1919842 PR QC101 190726 26/07/2019 EB1919842 PR QC201 190726 26/07/2019 RN1242611 PR BH02 1.90726 26/07/2019 EB1919842 PR BH03 0.5 190727 27/07/2019 EB1919842 PR BH03 0.5 190727 27/07/2019 EB1919842	Normal Normal Normal Duplicate Triplicate Normal Normal	0.0341 0.0059 0.0003 0.0292 0.0298 0.031 0.0157 0.201	0.0231 0.0056 <0.0002 0.0132 0.0142 0.015 0.0144 0.196	0.0003 0.0003 0.016 0.0156 0.016 0.0013 0.0048	0.0022 <0.0002 0.0004 0.0012 0.0012 <0.0012 <0.0002 0.0017	0.0003 <0.0002 <0.0002 0.0004 0.0004 <0.001 <0.0002 0.0008	0.0003 <0.0002 0.0014 0.0014 0.0012 0.0014 <0.0002 <0.0002	0.0006 <0.0002 0.0006 0.0016 0.0013 <0.0002 0.0002	0.0008 <0.0002 <0.0002 0.0008 <0.0008 <0.001 <0.0002 0.0018	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.001 <0.001	0.0013 <0.0002 <0.0002 <0.0002 <0.002 <0.002 <0.0002 0.0004	0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.001 <0.0002 0.0002	0.0005 <0.0002 <0.0002 0.0011 0.0012 0.0012 0.0004 0.022	< 0.0002	< 0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0002 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.0012 <0.0005 <0.0005 <0.0005 <0.0005 <0.001 <0.0005 <0.0005 <0.0005	0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.001 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.002 <0.002 <0.0005 <0.0005	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.002 <0.0002 <0.0002	< 0.0002	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.0403 0.0357 0.036 0.0361 0.0161 0.228	
PR BH02 0.5 190726 26007/2019 EB191984/2019 PR BH02 10 190726 26007/2019 EB191984/2019 PR QC101 190726 26/07/2019 EB191984/2019 PR QC201 190726 26/07/2019 EB191984/2019 PR BH02 0.5 190726 26/07/2019 EB191984/2019 PR BH03 0.5 190727 27/07/2019 EB191984/2019 PR BH03 0.5 190727 27/07/2019 EB191984/2019 PR BH03 0.1 190727 27/07/2019 EB191984/2019	Normal Normal Normal Duplicate Triplicate Normal Normal	0.0341 0.0059 0.0003 0.0292 0.0298 0.031 0.0157 0.201 0.0204	0.0231 0.0056 <0.0002 0.0132 0.0142 0.015 0.0144 0.196 0.0126	0.0003 0.0003 0.016 0.0156 0.016	0.0022 <0.0002 0.0004 0.0012 0.001 0.0012 <0.0002	0.0003 <0.0002 <0.0002 0.0004 0.0004 <0.001 <0.0002	0.0003 <0.0002 0.0014 0.0014 0.0012 0.0014 <0.0002 <0.0002	0.0006 <0.0002 0.0006 0.0016 0.0016 0.0013 <0.0002	0.0008 <0.0002 <0.0002 0.0008 <0.0008 <0.001 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.001 <0.001 <0.001 <0.001 <0.001	0.0013 <0.0002 <0.0002 <0.0002 <0.002 <0.002 <0.002	0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.001 <0.0002	0.0005 <0.0002 <0.0002 0.0011 0.0012 0.0012 0.0004 0.022 0.0046	< 0.0002	<0.0002 0.0015 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	 <0.0002 	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0002 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.0012 <0.0005 <0.0005 <0.0005 <0.0005 <0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.001 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0002 <0.0005 <0.0005 <0.0005 <0.0005	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	< 0.0002	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.002	<0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.005 <0.005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.0403 0.0357 0.036 0.0361 0.0161 0.228 0.0347	
PR BH02 0.5 190726 26/07/2019 EB1919842 PR DE10 1.0 190726 26/07/2019 EB1919842 PR OC101 190726 26/07/2019 EB1919842 PR OC101 190726 26/07/2019 EB1919842 PR OC201 190726 26/07/2019 EB1919842 PR BH03 0.5 190727 27/07/2019 EB1919842	Normal Normal Duplicate Triplicate Normal Normal Normal	0.0341 0.0059 0.0003 0.0292 0.0298 0.031 0.0157 0.201 0.0204 0.018	0.0231 0.0056 <0.0002 0.0132 0.0142 0.015 0.0144 0.196 0.0126 0.017	0.0003 0.0003 0.016 0.0156 0.016 0.0013 0.0048 0.0078 0.001	0.0022 <0.0002 0.0004 0.0012 0.0012 <0.0012 <0.0002 0.0017	0.0003 <0.0002 <0.0002 0.0004 <0.001 <0.0002 0.0008 0.0027 <0.0002	0.0003 <0.0002 0.0014 0.0014 0.0012 0.0014 <0.0002 <0.0002	0.0006 <0.0002 0.0006 0.0016 0.0013 <0.0002 0.0002	0.0008 <0.0002 <0.0002 0.0008 <0.001 <0.001 <0.0002 0.0018	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.001 <0.001 <0.001 <0.001 <0.002 <0.001 <0.001 <0.001 <0.001	0.0013 <0.0002 <0.0002 <0.0002 <0.002 <0.002 <0.0002 0.0004	0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.001 <0.0002 0.0002	0.0005 <0.0002 <0.0002 0.0011 0.0012 0.0012 0.0004 0.022	< 0.0002	< 0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	 <0.0002 	 <0.0006 <0.0005 	0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005	0.0012 <0.0005 <0.0005 <0.0005 <0.0005 <0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.001 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	< 0.0002	 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.002 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 	<0.0005 <0.0005 <0.0005	 <0.0005 	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.0403 0.0357 0.036 0.0361 0.0161 0.228	
PR BH02 0.5 190726 2607/2019 EB191984/2019 PR BH02 10 190726 2607/2019 EB191984/2 PR OC201 190726 2607/2019 EB191984/2 PR OC201 190726 2607/2019 EB191984/2 PR OC201 190726 2607/2019 EB191984/2 PR BH03 0.5 190727 2707/2019 EB191984/2 PR BH03 0.5 190727 2707/2019 EB191984/2 PR BH03 0.0 190727 2707/2019 EB191984/2 PR BH03 0.0 190727 2707/2019 EB191984/2 PR BH03 0.5 190727 2707/2019 EB191984/2 PR BH03 0.5 190727 2707/2019 EB191984/2 PR BH03 0.5 190727 2707/2019 EB191984/2	Normal Normal Duplicate Triplicate Normal Normal Normal Normal	0.0341 0.0059 0.0003 0.0292 0.0298 0.031 0.0157 0.201 0.0204 0.018	0.0231 0.0056 <0.0002 0.0132 0.0142 0.015 0.0144 0.196 0.0126	0.0003 0.0003 0.016 0.0156 0.016 0.0013 0.0048 0.0078	0.0022 <0.0002 0.0004 0.0012 0.0012 <0.0012 <0.0002 0.0017	0.0003 <0.0002 <0.0002 0.0004 0.0004 <0.001 <0.0002 0.0008 0.0027	0.0003 <0.0002 0.0014 0.0014 0.0012 0.0014 <0.0002 <0.0002	0.0006 <0.0002 0.0006 0.0016 0.0013 <0.0002 0.0002	0.0008 <0.0002 0.0008 0.0008 <0.001 <0.0002 0.0018 0.0041	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.001 <0.0002 <0.0002 <0.0002 <0.0002	<0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.001 <0.001 <0.001	0.0013 <0.0002 <0.0002 <0.0002 <0.002 <0.002 <0.0002 0.0004	0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.001 <0.0002 0.0002	0.0005 <0.0002 <0.0002 0.0011 0.0012 0.0012 0.0004 0.022 0.0046	< 0.0002	<0.0002 0.0015 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<pre><</pre>	 <0.0005 	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.0012 <0.0005 <0.0005 <0.0005 <0.0005 <0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	< 0.0002	 <0.0005 	<0.0005 <0.0005 <0.0005	 <0.0005 	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.0403 0.0357 0.036 0.0361 0.0161 0.228 0.0347	
PR BH02 0.5 190726 26007/2019 EB1919842 PR BH02 1.0 190726 26007/2019 EB1919842 PR QC101 190726 26007/2019 EB1919842 PR QC011 190726 26007/2019 EB1919842 PR DC011 190726 26007/2019 EB1919842 PR BH02 0.5 190727 27/007/2019 EB1919842 PR BH03 0.5 190727 27/07/2019 EB1919842 PR BH03 0.5 190727 27/07/2019 EB1919842 PR BH03 1.0 190727 27/07/2019 EB1919842 PR BH03 1.0 190727 27/07/2019 EB1919842 PR BH04 0.5 190726 26/07/2019 EB1919842 PR QC100 190726 26/07/2019 EB1919842 PR QC100 190726 26/07/2019 EB1919842	Normal Normal Duplicate Triplicate Normal Normal Normal Normal Duplicate	0.0341 0.0059 0.0003 0.0292 0.0298 0.031 0.0157 0.201 0.0204 0.018 0.0024 0.0026	0.0231 0.0056 <0.0002 0.0132 0.0142 0.015 0.0144 0.196 0.0126 0.017 0.0017 0.0016	0.0003 0.0003 0.016 0.0156 0.016 0.0013 0.0048 0.0078 0.001 0.0007	0.0022 <0.0002 0.0004 0.0012 0.0012 <0.0012 <0.0002 0.0017	0.0003 <0.0002 <0.0002 0.0004 <0.001 <0.0002 0.0008 0.0027 <0.0002	0.0003 <0.0002 0.0014 0.0014 0.0012 0.0014 <0.0002 <0.0002	0.0006 <0.0002 0.0006 0.0016 0.0013 <0.0002 0.0002	0.0008 <0.0002 0.0008 0.0008 <0.001 <0.0002 0.0018 0.0041 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.001 <0.001 <0.001 <0.001 <0.002 <0.001 <0.001 <0.001 <0.001	0.0013 <0.0002 <0.0002 <0.0002 <0.002 <0.002 <0.0002 0.0004	0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.001 <0.0002 0.0002	0.0005 <0.0002 <0.0002 0.0011 0.0012 0.0012 0.0004 0.022 0.0046 0.0003	< 0.0002	<0.0002 0.0015 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<pre><</pre>	 <0.0005 	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.0012 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<pre><0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002</pre>	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	< 0.0002	 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.002 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 	<0.0005 <0.0005 <0.0005 <0.0002 <0.0005 <0.0005 <0.0005 <0.0005	 cl.0005 <0.0005 	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.0403 0.0357 0.036 0.0361 0.0161 0.228 0.0347	
PR BH02 0.5 190726 2607/2019 EB191984/2019 PR BH02 10 190726 2607/2019 EB191984/2019 PR OC101 190726 2607/2019 EB191984/2019 PR PR OC101 190726 2607/2019 EB191984/2019 PR 14242511 PR BH03 D5 190726 2607/2019 EB191884/2 PR 18191884/2 PR BH03 D1 190727 27/07/2019 EB191884/2 PR 18191884/2 PR 18191884/2 18191884/2 PR 18191884/2 18191884	Normal Normal Duplicate Triplicate Normal Normal Normal Normal Normal Duplicate Triplicate	0.0341 0.0059 0.0003 0.0292 0.0298 0.031 0.0157 0.201 0.0204 0.018 0.0024 0.0026	0.0231 0.0056 <0.0002 0.0132 0.0142 0.015 0.0144 0.196 0.0126 0.017 0.0017	0.0003 0.0003 0.016 0.0156 0.016 0.0013 0.0048 0.0078 0.001	0.0022 <0.0002 0.0004 0.0012 0.0012 <0.0012 <0.0002 0.0017	0.0003 <0.0002 <0.0002 0.0004 <0.001 <0.0002 0.0008 0.0027 <0.0002	0.0003 <0.0002 0.0014 0.0014 0.0012 0.0014 <0.0002 <0.0002	0.0006 <0.0002 0.0006 0.0016 0.0013 <0.0002 0.0003 0.0004 <0.0002 <0.0002	0.0008 <0.0002 0.0008 0.0008 <0.001 <0.0002 0.0018 0.0041 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.001 <0.001 <0.001 <0.001 <0.002 <0.001 <0.001 <0.001 <0.001	0.0013 <0.0002 <0.0002 <0.0002 <0.002 <0.002 <0.0002 0.0004	0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.001 <0.0002 0.0002	0.0005 <0.0002 <0.0002 0.0011 0.0012 0.0012 0.0004 0.022 0.0046 0.0003	< 0.0002	<0.0002 0.0015 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	 <0.0002 <0.0002	 0.0000 <0.0005 <0.005 <0.00	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0	0.0012 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.00	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<pre><0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002</pre>	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	< 0.0002	 <0.0005 	<0.0005 <0.0005 <0.0005 <0.0002 <0.0005 <0.0005 <0.0005 <0.0005	 <0.0005 	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.0403 0.0357 0.036 0.0361 0.0161 0.228 0.0347	
PR BH02 0.5 190726 2607/2019 EB1919842 PR BH02 1.0 190726 2607/2019 EB1919842 PR OCI01 190726 2607/2019 EB1919842 PR OC201 190726 2607/2019 EB1919842 PR DC101 190726 2607/2019 EB1919842 PR BH03 D5 190727 2707/2019 EB1919842 PR BH03 D5 190727 2707/2019 EB1919842 PR BH03 D1 190727 2707/2019 EB1919842 PR BH03 D1 190727 2707/2019 EB1919842 PR BH04 D1 190726 2607/2019 EB1919842 PR CC00 190726 2607/2019 EB1919842 PR DC100 190726 2607/2019 EB1919842 PR DC00 190726 2607/2019 EB1919842 PR DC100 190726 260	Normal Normal Duplicate Triplicate Normal Normal Normal Normal Duplicate Triplicate Normal	0.0341 0.0059 0.0003 0.0292 0.0298 0.031 0.0157 0.201 0.0204 0.018 0.0024 0.0026 0.0024 0.0026 0.0004 0.0008	0.0231 0.0056 <0.0002 0.0132 0.0142 0.015 0.0144 0.0126 0.017 0.0017 0.0016 0.0029 <0.0002	0.0003 0.0003 0.016 0.0156 0.016 0.0013 0.0048 0.007 0.001 0.0007 0.001 0.0015 0.0008	0.0022 <0.0002 0.0004 0.0012 0.0012 <0.0012 <0.0002 0.0017	0.0003 <0.0002 <0.0004 0.0004 <0.001 <0.0002 0.0008 0.0027 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	0.0003 <0.0002 0.0014 0.0014 0.0012 0.0014 <0.0002 <0.0002	0.0006 <0.0002 0.0006 0.0016 0.0013 <0.0002 0.0003 0.0004 <0.0002 <0.0002 <0.0002	0.0008 <0.0002 0.0008 0.0008 <0.001 <0.0002 0.0018 0.0041 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0.0013 <0.0002 <0.0002 <0.0002 <0.002 <0.002 <0.0002 0.0004	0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.001 <0.0002 0.0002	0.0005 <0.0002 <0.0002 0.0011 0.0012 0.0012 0.0004 0.022 0.0046 0.0003	< 0.0002	<0.0002 0.0015 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	 <0.0002 <0.0002	 	 <0.000 <0.0005 <	 <0.0005 <0.0005	0.0012 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0	0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.00	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.000	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.000	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	 0.0005 0.0002 0.0002 0.0002 0.0005 	 <0.0005 <0.0005 <0.0005 <0.002 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.0403 0.0357 0.036 0.0361 0.0161 0.228 0.0347 0.0185	
PR BH02 0.5 190726 2607/2019 EB191984/2019 PR BH02 10 190726 2607/2019 EB191984/2019 PR OC101 190726 2607/2019 EB191984/2019 PR PR OC101 190726 2607/2019 EB191984/2019 PR 14242511 PR BH03 D5 190726 2607/2019 EB191884/2 PR 18191884/2 PR BH03 D1 190727 27/07/2019 EB191884/2 PR 18191884/2 PR 18191884/2 18191884/2 PR 18191884/2 18191884	Normal Normal Duplicate Triplicate Normal Normal Normal Normal Duplicate Triplicate Normal	0.0341 0.0059 0.0003 0.0292 0.0298 0.031 0.0157 0.201 0.0204 0.018 0.0024 0.0026 0.0044	0.0231 0.0056 <0.0002 0.0132 0.0142 0.015 0.0144 0.0126 0.017 0.0017 0.0016 0.0029 <0.0002	0.0003 0.0003 0.016 0.0156 0.016 0.0013 0.0048 0.007 0.001 0.0007 0.001 0.0015 0.0008	0.0022 <0.0002 0.0004 0.0012 0.0012 <0.0012 <0.0002 0.0017	0.0003 <0.0002 <0.0004 0.0004 <0.001 <0.0002 0.0002 0.00027 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	0.0003 <0.0002 0.0014 0.0014 0.0012 0.0014 <0.0002 <0.0002	0.0006 <0.0002 0.0006 0.0016 0.0013 <0.0002 0.0003 0.0004 <0.0002 <0.0002 <0.0002	0.0008 <0.0002 0.0008 0.0008 <0.001 <0.0002 0.0018 0.0041 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0.0013 <0.0002 <0.0002 <0.0002 <0.002 <0.002 <0.0002 0.0004	0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.001 <0.0002 0.0002	0.0005 <0.0002 <0.0002 0.0011 0.0012 0.0012 0.0004 0.022 0.0046 0.0003	< 0.0002	<0.0002 0.0015 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	 <0.0002 <0.0002	 <0.0002 <0.0002	 0.0006 0.0005 	 <0.0005 <0.0005	0.0012 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0	0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.00	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.000	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	 <0.0005 	 <0.0005 <0.0005 <0.0005 <0.002 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 	 cl.00005 cl.0005 	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.0403 0.0357 0.036 0.0361 0.0161 0.228 0.0347 0.0185	
PR BH02 0.5 190726 2607/2019 EB1919842 PR BH02 1.0 190726 2607/2019 EB1919842 PR OC101 190726 2607/2019 EB1919842 PR OC201 190726 2607/2019 EB1919842 PR DC201 190726 2607/2019 EB1919842 PR BH03 D.5 190727 2707/2019 EB1919842 PR BH03 D.1 190727 2707/2019 EB1919842 PR BH03 D.1 190727 2707/2019 EB1919842 PR BH03 D.1 190727 2707/2019 EB1919842 PR BH04 D.1 190726 2607/2019 EB1918942 PR AC100 190726 2607/2019 EB1918942 PR PR AC1010 190726 2607/2019 EB1918942 PR PR AC1010 190726 2607/2019 EB1919842 PR P	Normal Normal Duplicate Triplicate Normal Normal Normal Normal Duplicate Triplicate Normal	0.0341 0.0059 0.0003 0.0292 0.0298 0.031 0.0157 0.201 0.0204 0.018 0.0024 0.0026 0.0024 0.0026 0.0004 0.0008	0.0231 0.0056 <0.0002 0.0132 0.0142 0.015 0.0144 0.0126 0.017 0.0017 0.0016 0.0029 <0.0002	0.0003 0.0003 0.016 0.0156 0.016 0.0013 0.0048 0.007 0.001 0.0007 0.001 0.0015 0.0008	0.0022 <0.0002 0.0004 0.0012 0.0012 <0.0012 <0.0002 0.0017	0.0003 <0.0002 <0.0004 0.0004 <0.001 <0.0002 0.0008 0.0027 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	0.0003 <0.0002 0.0014 0.0014 0.0012 0.0014 <0.0002 <0.0002	0.0006 <0.0002 0.0006 0.0016 0.0013 <0.0002 0.0003 0.0004 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	0.0008 <0.0002 0.0008 0.0008 <0.001 <0.0002 0.0018 0.0041 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0001 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.000	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0.0013 <0.0002 <0.0002 <0.0002 <0.002 <0.002 <0.0002 0.0004	0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 0.0002 0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <	0.0005 <0.0002 0.0011 0.0012 0.0012 0.0004 0.0022 0.0046 0.0003 <0.0002 <0.0002 <0.001 <0.0001	< 0.0002	<0.0002 0.0015 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	 <0.0002 <0.0002	0.0000 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<pre><0.0005 <0.0005 <</pre>	0.0012 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0	0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.00	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.000	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	 0.0005 0.0002 0.0002 0.0002 0.0005 	 <0.0005 <0.0005 <0.0005 <0.002 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.0403 0.0357 0.036 0.0361 0.0161 0.228 0.0347 0.0185	- - - - - - - - - - - - - - - -
PR BH02 0.5 190726 26007/2019 EB1919842 PR BH02 1.0 190726 2607/2019 EB1919842 PR QC101 190726 2607/2019 EB1919842 PR QC201 190726 2607/2019 EB1919842 PR DC01 190726 2607/2019 EB1919842 PR BH03 0.5 190727 2707/2019 EB1919842 PR BH03 0.5 190727 2707/2019 EB1919842 PR BH03 0.1 190727 2707/2019 EB1919842 PR BH03 0.1 190727 2707/2019 EB1919842 PR BH03 0.1 190727 2707/2019 EB1919842 PR DF04 0.5 190727 2607/2019 EB1919842 PR QC200 190726 2607/2019 EB1919842 PR QC200 190726 2607/2019 EB1919842 PR QC200	Normal Normal Duplicate Triplicate Normal Normal Normal Normal Duplicate Triplicate Normal Normal	0.0341 0.0059 0.0003 0.0292 0.0298 0.031 0.0157 0.201 0.0204 0.0024 0.0026 0.0024 0.0026 0.0024 0.0008 0.0136	0.0231 0.0056 <0.0002 0.0132 0.0142 0.015 0.0144 0.196 0.017 0.0017 0.0016 0.0029 <0.0002 0.013	0.0003 0.0003 0.016 0.016 0.016 0.0013 0.0013 0.0048 0.0078 0.007 0.0007 0.0007 0.0001 0.0005 0.0008 0.0006	0.0022 <0.0002 0.0004 0.0012 0.0012 <0.0012 <0.0002 0.0017	0.0003 <0.0002 <0.0002 0.0004 <0.001 <0.0002 0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	0.0003 <0.0002 0.0014 0.0014 0.0012 0.0014 <0.0002 <0.0002	0.0006 <0.0002 0.0006 0.0016 0.0013 <0.0002 0.0003 0.0004 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	0.0008 <0.0002 0.0008 0.0008 <0.001 <0.0002 0.0018 0.0041 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0001 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.000	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0.0013 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0003 <0.0003 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 0.0002 0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <	0.0005 <0.0002 0.0011 0.0012 0.0012 0.004 0.0022 0.0046 0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	< 0.0002	<0.0002 0.0015 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.000	 0.0002 0.0002	0.0000 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	 <0.0005 <0.0005	0.0012 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.000	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	 0.0005 0.0002 0.0002 0.0002 0.0005 	 <0.0005 <0.0005 <0.0005 <0.002 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	0.0403 0.0357 0.036 0.0361 0.0161 0.228 0.0347 0.0185	- - - - - - - - - - - - - - - - -

mg/kg' is milligrams per kilogram <' is less than limit of reporting -' not analysed

Appendix B: Tables PFAS Detailed Site Investigation Proserpine Fire Station Project No: 60609758

µg/L' micrograms per litre <' less than the limit of reporting -' not analysed

Rev 0 16 December 2019 Prepared for: QFES ABN 93 035 163 778 Appendix B: Tables PFAS Detailed Site Investigation Proserpine Fire Station Project No: 60609758

DE N-MeFOSE	Sum of PFAS	Sum of TOP C4-C14 Carboxylates and C4- C8 Sulfonates
ug/L	µg/L	µg/L
0.001	0.0003	0.01
0.025	6.23	-
< 0.25	54.1	-
0.025	50.9 38.7	-
0.005	38.7	-
0.025	10.6	-
0.025	10.4	-
< 0.05	53.7	53.7

Appendix C

Photographs

		PHOTOGRAPHIC LOG
Site Name: Proserpine Fire Station	Site Location: 102 Main Street, Proserpine, Queensland	Project No: 60609758
Plate No. Date: 1 13/02/2019 Direction Photo Taken: North		
Description: Interior of shed historically used for foam storage.		

		PHC	DTOGRAPHIC LOG
Site Name: Proserpine F	Fire Station	Site Location: 102 Main Street, Proserpine, Queensland	Project No: 60609758
Plate No. 2	Date: 13/02/2019		
Direction P North Description The rear of t Station, sho various exte multi-level u	he Fire wing the nsions and		

PHOTOGRAPHIC LOG Project No: 60609758 Site Name: Site Location: Proserpine Fire Station 102 Main Street, Proserpine, Queensland Plate No. Date: 13/02/2019 3 **Direction Photo Taken:** North Description: Site hardstand area in foreground and Fire Station in the background. Concrete hardstand was gradually sealed over time.

			PHOTOGRAPHIC LOG
Site Name: Proserpine I	Fire Station	Site Location: 102 Main Street, Proserpine, Queensland	Project No: 60609758
Plate No. 4 Direction P East	Date: 13/02/2019 hoto Taken:		
Description Remnants o shelter whic previously c fuel bowser an undergro tank. No US identified du service loca	f a lean-to h may have ontained a and possibly und storage ST was ring the		

		PH	OTOGRAPHIC LOG			
Site Name: Proserpine F	Fire Station	Site Location: 102 Main Street, Proserpine, Queensland	Project No: 60609758			
Plate No. 5 Direction P South-east Description Exterior of w the rear of th hose drying visible on th photograph.	vorkshop at ne site. A rack is e left of the	<image/>				

	I	PHOTOGRAPHIC LOG
Site Name: Proserpine Fire Station	Site Location: 102 Main Street, Proserpine, Queensland	Project No: 60609758
Plate No. Date: 6 13/07/2019 Direction Photo Taken: South Description: Exterior frontage to Main Street. The two roller doors provide access to the historical Engine Room and the upstairs area was historically used for training purposes.		

PHOTOGRAPHIC LOG

Site Name: Proserpine F	Fire Station	Site Location: 102 Main Street, Proserpine, Queensland	Project No: 60609758		
Plate No. 7 Direction P North-west	Date: 27/07/2019 hoto Taken:				
Description Example of flush gatic w PR_MW01	installed				

			PHOTOGRAPHIC LOG
Site Name: Proserpine F	Fire Station	Site Location: 102 Main Street, Proserpine, Queensland	Project No: 60609758
Plate No. 8Date: 07/08/2019Direction Photo Taken: North-east			
Description Flush gatic v at PR_MW0	vell installed		

Appendix D

Bore Logs

MONITORING WELL LOG PR_BH01 / PR_MW01 ENSR Australia Ptv Ltd Level 5, 828 Pacific Highway Gordon NSW 2073 PROJECT NUMBER 60609758 DATE 27/7/2019 PROJECT NAME _QFES PFAS DSI - Proserpine BLANK 0.0 - 3.0 m bgl LOCATION 102 Main St, Proserpine, 4800 SCREEN 3.0 - 5.0 m bgl GRAVEL PACK 2.5 - 5.0 m bgl DRILLING METHOD Hand Auger, Push tube & Solid Stem Auger SAMPLING METHOD Grab & Push tube SANITARY SEAL/BENTONITE 0.3 - 2.5 m bgl SURFACE ELEVATION 12.999 m AHD WELL HEAD/TOC LOGGED BY C. McCosker NORTHING 7743196.3 665286.4 EASTING COMMENTS Penetrometer (Kg/cm2) RECOVERY ANALYSED GRAPHIC LOG SAMPLE NUMBER CONTACT DEPTH (mdd) DEPTH (m BGL) LITHOLOGIC DESCRIPTION WELL DIAGRAM PID (CONCRETE P., 0.20 Grout PR_BH01_0.25_ 190727 Ж FILL: Sandy CLAY, black, dry, firm, no plasticity, m 0.0 trace of fine angular gravels. 0.40 PR_BH01_0.5_ 190727 FILL: CLAY, Black, dry, soft-firm, no plasticity. B 0.0 0.70 DISTURBED NATURAL: Clayey SAND, brown, dry, medium dense, medium grained. PR_BH01_1.0_ 190727 Ж M. 0.0 1.20 Silty SAND, light brown, dry, medium dense, medium-coarse grained. -Bentonite PR_BH01_1.5_ 190727 M. -Casing 0.0 PR_BH01_2.0_ 190727 0.0 Trace of sub-rounded medium gravels @ 2.10m bal. Moist @ 2.60m bgl. PR_BH01_3.0_ 190727 0.0 3.20 SAND, light brown, dry, loose, coarse grained, with fine rounded gravels. Ţ -Filter Sands Moist @ 3.80m bgl. 4.00 PR_BH01_4.0_ 190727 Wet @ 3.90m bgl. Screen 0.0 CLAY, brown, grey mottle, moist, stiff, low-medium plasticity 4.80 SAND, light brown, wet, loose, coarse grained, PR_BH01_5.0_ 190727 Ж with fine rounded gravels. 5.00 0.0 5.0 End of hole at target depth. Total Depth: 5.00 m BORELOGS DRAFT.GPJ 16/12/19

Я

PAGE 1 OF 1

ROJ		MBI	ER <u>606097</u>		01 5					
OCA	TION	102	Main St, Pro	serp	oine, 48	00	e	SCREEN 2.4 - 5.2 m bgl		
RILL	ING ME	THO	DD <u>Hand A</u> HOD Grab &	uger	, Push	tube &	Solid Stem Auger	GRAVEL PACK <u>1.9 - 5.2 m bg</u> SANITARY SEAL/BENTONITE		m bal
URF	ACE EL	EVA	TION 13.0						<u> 1.J</u>	
	. Head/ Ged by		: McCosker					NORTHING 7743176.4		
OMN	MENTS					, ,		EASTING 665291.1		I
PID (ppm)	Penetrometer (Kg/cm2)	RECOVERY	SAMPLE NUMBER	ANALYSED	DEPTH (m BGL)	GRAPHIC LOG	LITHOL	OGIC DESCRIPTION	CONTACT DEPTH	WELL DIAGRAM
							CONCRETE			Grout
0.1		₹ ^M 2	PR_BH02_0.3_ 190726				FILL Sandy CLAV	, black, dry, stiff, no plasticity.	0.30	
0.1		1997 1997	PR_BH02_0.5_ 190726	Ж			TILL. Gandy OLAT	, show, ary, sun, no plasticity.		
0.0									0.80	
			PR_BH02_1.0_				Silty CLAY, brown	, dry, stiff, low plasticity.	- 0.00	
0.0		60 <u>3</u>	PR_BH02_1.0_ 190726	Ж	- 1.0 -					⊢Bentonite
									1.35	 Casing
0.0		5003	PR_BH02_1.5_ 190726				SAND, light brown medium-coarse gr	ı, dry, medium dense, ained.		
.0							Loose @ 1.60m b	gl.		
			PR BH02 2.0							
0.0			PR_BH02_2.0_ 190726		2.0		Sandy CLAY, brow	vn, grey mottle, moist, firm, low	2.10	
							plasticity, trace of	silt.		
							Stiff, medium plas	ticity @2.50m.bal		
							ean, moaidin pido			
			PR BH02 3.0				Very moist @ 2.90	ım bgl.		
0.0			PR_BH02_3.0_ 190726		- 3.0		,	~	3.20	
							Silty SAND, brown medium-coarse gr	i, moist, medium dense, ained.		
							-		-	Filter Sand
							Medium grained @ Wet @ 3.70m bgl.		Ţ	Screen
			PR_BH02_4.0_		4_0					Scieen
0.0			190726		_ 4.0				Ā	
							Increasing silt con	tent from 4.40m bgl.		
			PR_BH02_5.0_	*						
0.0			190726							
0.0		\ge	PR_BH02_6.0_						6.00	
			190726				End of hole at targ Total Depth: 6.00	et depth. Collapse to 5.20m bgl.		

ſ

Gord PROJ PROJ LOCA DRILL SAMF SURF WELL	ECT NAME TION 102 ING METH PLING METH ACE ELEV HEAD/TOO	General Content 606097 QFES PFA 2 Main St, Pro 00 Hand A HOD Grab & ATION 12.8 C	<u>ASD</u> Diserp Luger & Pu	oine, 48 ⁻ , Push sh tube	800 tube 8	ne I & Solid Stem Auger	DATE <u>27/7/2019</u> BLANK <u>0.0 - 3.7 m bgl</u> SCREEN <u>3.7 - 5.7 m bgl</u> GRAVEL PACK <u>3.2 - 5.7 m bg</u> SANITARY SEAL/BENTONITE		m bgl
	MENTS	. McCosker					NORTHING 7743197.4 EASTING 665302.4		
PID (ppm)	Penetrometer (Kg/cm2) RECOVERY	SAMPLE NUMBER	ANALYSED	DEPTH (m BGL)	GRAPHIC LOG	LITHOLO	GIC DESCRIPTION	CONTACT DEPTH	WELL DIAGRAM
0.0	195 195	PR_BH03_0.3_ 190727 PR_BH03_0.5_ 190727	*			CONCRETE FILL: Sandy CLAY, b	lack, dry, stiff, no plasticity.	0.30	Grout
0.0	Sin	PR_BH03_1.0_ 190727	ж	 _ 1.0 		Silty CLAY, brown, di	ry, stiff, low plasticity.	0.90	
0.0	602	PR_BH03_1.5_ 190727		 		SAND, brown, loose, trace of silt.	, medium-coarse grained,	1.50	Bentonite
0.0		PR_BH03_2.0_ 190727		2.0 2.0 		CLAY, brown/black, r low-medium plasticity	minor grey mottle, moist, stiff, y.	1.90	 −Casing
0.0		PR_BH03_3.0_ 190727				CLAY, brown, grey m plasticity.	nottle, moist, firm, medium	2.80	
0.0		PR_BH03_4.0_ 190727				Silty SAND, brown, w grained.	vet, medium dense, medium	3. <u>₹</u> Ø	
0.0	X	PR_BH03_5.0_ 190727	*			Medium-coarse grair	ned from 4.60m bgl.		Filter Sands
						End of hole at target Total Depth: 5.70 m	depth.	5.70	

Γ

Leve Gord PROJI PROJI LOCA DRILL SAMP SURF WELL	ect na Tion _ .ing me 'Ling m Ace el .head/'	acific 2073 MB <u>102</u> TH ETH EV/	Highway ER 606097 QFES PFA Main St, Pro OD Hand A HOD Grab & ATION 12.9 C	ASD bserp uger & Pu	<u>SI - Pro</u> bine, 48 , Push sh tube	oserpii 300 tube 8	ne	DATE 26/7/2019 BLANK 0.0 - 4.0 m bgl SCREEN 4.0 - 5.5 m bgl GRAVEL PACK 3.5 - 5.5 m bgl SANITARY SEAL/BENTONITE	— gl	04 / PR_MW04
	ED BY		. McCosker					NORTHING 7743140.2 EASTING 665288.9		
PID (ppm)	Penetrometer (Kg/cm2)	RECOVERY	SAMPLE NUMBER	ANALYSED	DEPTH (m BGL)	GRAPHIC LOG	LITHOL	OGIC DESCRIPTION	CONTACT DEPTH	WELL DIAGRAM
0.0		₩3	PR_BH04_0.1_ 190726				FILL: Silty CLAY, d plasticity.	ark brown, dry firm, low		Grout
0.0	-	₩3	PR_BH04_0.5_ 190726	Ж			FILL: CLAY, brown firm, medium plasti	, orange mottle, slightly moist, city, with charcoal.	0.40	
0.0	-	€ ® }	PR_BH04_1.0_ 190726	Ж	 - 1.0 		CLAY, light brown, moist, firm, low-me	minor orange mottle, slightly dium plasticity.	0.80	
0.0	-	₹®}	PR_BH04_1.5_ 190726		 		No mottling from 1.	30m bgl.		
0.0			PR_BH04_2.0_ 190726		2.0		Silty CLAY, grey, lig soft-firm, medium p	ght brown mottle, slightly moist, lasticity.	1.90	←Bentonite <
0.0			PR_BH04_3.0_ 190726		 		Moist @ 2.50m bgl Grey/light brown @			
								ed sand @ 3.30m bgl. moist, medium dense, medium	3.¥	
0.0			PR_BH04_4.0_ 190726		 - 4.0		grained.	grey mottle, wet, firm, medium	4.10	
0.0			PR_BH04_4.5_ 190726		 		plasticity.	gioy modo, not, nin, notion		Filter Sands
0.0			PR_BH04_5.0_ 190726	Ж	 5.0		Silty SAND, brown, grained.	wet, medium dense, medium	4.80	Screen
2							End of hole at targe Total Depth: 5.50 n		5.50	

	A		MC	AECOM Aust Level 8, 540 ' Fortitude Vall	Wickhai	m Street			BOR	EHOLE	LOG	PR_	SS1		
	PROJEC PROJEC LOCATIO DRILLIN SAMPLII	t na Dn g me	ME	102 M Hand	<u>PF</u> lain	AS DS St, Pro	<u>I - Pro</u> oserpir	serpine ne, 4800)	DATE	_26/07	7/2019			
	LOGGEE COMME			C. Mc	Cos	ker				-					
	PID (ppm)	RECOVERY	SAMPLE		ANALYSED	DEPTH (m BGS)	GRAPHIC LOG	USCS CLASS		OGIC DESCR					CONTACT DEPTH
PR_BORELOGS_DRAFT.GPJ 16/12/19	0.0		PR_SS1_0.1					CL-ML	FILL: CLAY	Silty CLAY loan /, black, dry, stil e at target depth h: 0.50 m	f, no plastic			ne grained.	0.40
۲															

Appendix E

Fieldsheets and Calibration Certificates

											Bo	re ID:	mn	10)
Project Name:	QF	FES GW M	onitoring	Projec	t Number:	60609758	3	PM Name:		James Peachey		nple Date:	7	8/19
illent:		FES		Projec	t Location:	grow	respine.	Fieldwork	Staff:	NK				mpling Event? (circle
	Ger	neral Bore	Inform	ation	New Constant Strengther	Para	ameter Info.	and the second division of the second divisio	amination	Sampling Meth	od	and the second se	ydrasleev	ve info. Monitoring sequenc
ate of GW L	evel: 78	19~15	Bore R	Radius (mm):	200	Chem Kit Seria	1 No.: 1901011	V	ontaminated	Low Flow Pump rate:	110	Hydrasleeve Size:	11-	followed (number in
epth to GW		588	Screer	n Interval (m):	Bo Hom D. Sn	Chem Kit Mode	1: 441 Proph	Ju Ded	icated	Intake dept		Hydrasleeve Type	1	order):
ore Depth (m	n-pvc): 4,7	30	Casing	g Radius (mm):	50	Corrected Rec			osable	Dalio	ydrasleeve	Sampling Depth (m		Gauging
epth to Prod	uct (m-pvc):		-	Type (gatic/sticl		(The correction to apply is probe dependent)			er (specify)	Peristaltic Pump	/aterra	Hydrasleeve Instal		Hydrasleeve in Hydrasleeve ou
roduct Thick	ness (m): 🖌			ocked (YES/NO		Parameter me	thod: FI Down			Cher (specify)		Sampling Start/Tim	le:	Parameters
				pe (if applicable			Retrie	and the second se		Total purgad valuma (I.):				Falameters
Calculated b	ore volume (L	_):	Includ	les/ excludes t	oore annulus (o	circle)	# purge volume	es removed: Quality Param	eters	Total purged volume (L):				
Time	Cumulative V Removed (L		VL ovc)	Pump Rate	DO (ppm or mg/L)	E.C. (mS/cm or µS/cm)	pH	Redox (mV)	Temp °C			Odour, Colour, Turbidi	ty	
01111	0	2	600	1/2		μοromy			-	Brown Oron ge	Hirl	n tubidit	u.	
1540	0	2.6		11	4.52	203.6	1.00	141.3	26.8	in Courty			1	
1543	0.5	3.6		14	4.32	2027	6.59	142.6		2 41				
1546	10							143.6	26.8	I T				
1549	1.5	1. 6	00	11	4.39	201.5	6.52							
1552	2.0		596	el	9.17 /	199.2 -	alsa	145.4-	26.8	·				
		,	(6.46-							
			-	Agano	100	1600	Port.			/				
1555	2.5	3,	596	n 1	uit6 -	196.3	6.43	145.7	26.7					
.000	3.0	Y		1'	4.27	195.7	6.43	146.9	26.7					
1558	5.0				Near	1 () · · ·								
					0 1 8	60 100	0 - 34							
		_			ampled	6 100								
		A	la Dara	meter Range	± 10%	± 3%	± 0.05	± 10 mV	± 0.2 °C	c	± 10%	turbidity (if using a turbi	dity meter)	
A.a.a	lytes Sample		ole Para	meter Kange	Bottles Co	and the second division of the second divisio		and the second se	C Informati	ion	12.2.2.2	Field Commets	Same In	and the second second
				10 1 1 1 1 1 1 1 1		mL Ferrous	x 60 mL metals (H			Bore volu	me calculation	, bore condition, fate of	tubing, redox	correction etc.
Field Filtered:		/ /		x 40 mL Vial (HCI	/	0 mL Amber	x 250 mL Plastic	1103)	TI					
		/ /		x 40 mL Vial (H ₂ S			X 200 mil 1 lastic					1 1		
61		1							15			1		
				A	pproval and Dist	ribution						11 /		
									1			V //		
Field	work Staff Sig	nature		Date		Checker	Name and Signa	ture	Date			//		
Pr	oject Manager	Signature		Date	_ Dis	tribution: Project	Central File						and the second second second	

A OM

Jury

Q4AN(EV)-405-FM1

OM

Q4AN(EV)-405-FM1

Project Name:	OFF	S GW Monito	pring Proje	ct Number:	60609758		PM Name:		Desi.	James Peachey	Sample Date:	7/8	3/19
lient:	QFE			ct Location:		copike	Fieldwork	Staff:	10000	NK	Well Development	or Well San	npling Event? (circl
lient:		ral Bore In		CT EOCUTION:	and the second se	imeter Info.	Zuite Co. Carbon et al a table	amination	-	Sampling Method	Hydrasleeve info.		re info.
ate of GW Lev	and the second se		Bore Radius (mm):	7.00		No .: (9(1)	2 P1 Dec	ontaminated	FI/	Low Flow Pump rate: 2/3	Hydrasleeve Size	:	Monitoring sequen – followed (number
epth to GW (m			Screen Interval (m):	Botton	Chem Kit Mode	214. 2		icated		Intake depth: 4 · 5	Hydrasleeve Typ	e:	order):
ore Depth (m-			Casing Radius (mm):		Corrected Red				FI,	Bailer FI Hydrasleev		m-pvc):	Gauging
epth to Produc			Cover Type (gatic/sti		(The correction to	apply is probe depe				Peristaltic Pump Waterra	Hydrasleeve Inst	all time:	Hydrasleeve in
roduct Thickne			Bore Locked (YES/N		Parameter met	hod: FI Down			FL	Other (specify)	Sampling Start Ti	me:	Hydrasleeve o
			key Type (if applicab	and the second se	1	FI Retrie	ved						Parameters
Calculated bo	re volume (L):		ncludes/ excludes		circle)	# purge volume	es removed:		Tota	l purged volume (L):			
	Contra a series and	New York, State			NA STATE DATE OF	Water	Quality Param	eters					
Time	Cumulative Vol. Removed (L)	SWL (m-pvc)	Pump Rate	DO (ppm or mg/L)	E.C. (mS/cm or μS/cm)	рН	Redox (mV)	Temp °C			Odour, Colour, Turbi	dity	
14:54	b	3.64	2 0+2/3	-	-	1	-	-					
14:57	0-5		11	4.89	269.9	6.50	127.0	28.5		Brown loonne, u	med - fuibid	ity.	
15:00	1.25	3.67	1	4.83	268.3	6.56	126.1	28.5					
	2.0	2.67		4.65	244.5	6.47	125.6	28.6	1	Med-High to	vbidity.		
15:03		4. DT	1	-	241.4	6-44		28.4	<u></u>				
40:21	2.5	N N		4.21			128-8	28.4					
15:09	3.0			4.13	241.1	6-42	132-1		-/				
15:12	3.5	11	41	4.33	239.1	6.41	134.1-	28.4					
				~ Nenv									
			Sai	mpled @	7.56	@ 1515							
				1 -		C							
									_				
				+									
	A	ccentable	Parameter Range	± 10%	± 3%	± 0.05	± 10 mV	± 0.2 °C	;	± 10	0% turbidity (if using a tur	oidity meter)	
Analy	tes Sampled f		aramotorrang	Bottles Co	ollected	Service State	QA/Q	C Information	on	and the state of the second	Field Commet	S	and the second second
Field Filtered:	Unfiltered:		x 40 mL Vial (HC	I) X 60	mL Ferrous	x 60 mL metals (H	NO2) OPR-	QC104-10	203	OF Bore volume calculati	ion, bore condition, fate o	f tubing, redox	correction etc.
Telu i intereu.		/	x 40 mL Vial (H2	<u></u>	0 mL Amber 3		PR-	QC204-1	903	07			
		/				A 200 ME Hostic							
11	10												
	All March and			Approval and Dist	ribution			aran aran		1			
Fieldw	ork Staff Signat	ture	Date		Checker N	lame and Signat	ure	Date					
										1			

Q4AN(EV)-405-FM1

Tum

										Bore ID:		mwo3
Project Name:	QFE	S GW Monit	toring	Project Number:	60609758	3	PM Name	8:	James Peachey	Sample Date:		7/8/19
Client:	QFE	S		Project Location:	Prose	opine	Fieldwor	k Staff:	NK	Well Devel	opment or W	ell Sampling Event? (circl
		ral Bore In	formation	Contraction of the second		ameter Info.	the subscription of the su	ntamination	Sampling Method			asleeve info.
Date of GW Lev		-	Bore Radius (m		Chem Kit Seria	1 No .: 190101	UIZ TO De	contaminated	Low Flow Pump rate: 1	C Hydras	leeve Size:	Monitoring sequen
Depth to GW (n		i vi	Screen Interval	(m): Bottom	Chem Kit Mode	el: 451 Prop	WG De	dicated	Intake depth: 🗲	- 0 m Hydras	leeve Type:	followed (number i order):
Bore Depth (m-	-pvc): 5.7	78 (Casing Radius	(mm): 50mm	Corrected Rec	iox: Y / N	🗖 Dis	sposable	□I/ Bailer □ Hydrasl	eeve Sampli	ng Depth (m-pvo	
Depth to Produ	ct (m-pvc): 🛛 🗠	(Cover Type (ga	tic/stick up):	(The correction to	o apply is probe de	ependent) 📲 Oth	her (specify)	Peristaltic Pump Waterra	Hydras	leeve Install time	e: Hydrasleeve in
Product Thickne	ess (m): -		Bore Locked (Y	ES/NO):	Parameter met	thod: 🗾 Dov	wnhole		Other (specify)	Sampli	ng Start Time:	Hydrasleeve o
		I	Key Type (if app	olicable): 🥣		FI Reti	rieved					Parameters
Calculated bo	re volume (L):		Includes/ exclu	udes bore annulus (circle)	# purge volun	mes removed:	Т	otal purged volume (L):			
	1	I Contraction	A STREET AND		E.C.	Wate	r Quality Paran	neters			land the state of	
Time	Cumulative Vol. Removed (L)	SWL (m-pvc)	Pump R	tate DO (ppm or mg/L)	(mS/cm or µS/cm)	pH	Redox (mV)	Temp °C		Odour, Col	lour, Turbidity	
12:08	0	3,492	2 -		-	5	-	-				
13:26	0.25	3.73	6 1/2	. 3.27	235.4	6.40	[37.]	27-5	Pale busin	mo oda	1 gher	, clear
13:29	0.75	3.831	11	3.33	235.4	6.40	139.0	27.6	is 1			, chur
13:32	1-25	3.88	8 11	3.54	234.0	6.37	139.7	27.3	×1			
13:35	1.75	3.94	13 11	2,60	235.2	6.26	140.2	27.5	.1			
13:48	2.25	3.98	1 0	3.70	236-1	6.33	140.9	27.5	IN IN		-	
13:41	2.50	\$1.03	1	3.67	236.8	6-31	141.3	27.5	75			
13:46	3.25	4.09	g li	3.76	236-3	6.32	139.7	27.7	XC.			
13:51	4.0	4.22	1 11	3-87	233.2	6-37	136.6	27.7				
13:56	3.0	4.29	8 "	3.73	232.4	6.32	137.1	27.6				
14:01	5.5	4.35	11	3.67	233.3	6-32	138.0	27.8				
14:12	6.5	4.150	1 1/3		265.0	6-32	119.9	27-7	Glourd pump	down		
14:17	2.0	4.171	i ii	2-88	261.0	0-31	170.7	27.7				
	Ac	ceptable F	Parameter Ra	inge: ± 10%	± 3%	± 0.05	± 10 mV	± 0.2 °C	±	10% turbidity (if u	using a turbidity me	ater)
Analyt	tes Sampled fo	ort	5.24	Bottles Co	llected		QA/Q	C Information	1	Field C	Commets	Notes and the Karley
Field Filtered:	Unfiltered:	11	x 40 mL Via	I (HCI) × 60	mL Ferrous	x 60 mL metals (I	HNO ₃)	1.	Bore volume calcu	lation, bore condit	tion, fate of tubing,	redox correction etc.
/	/ /		x 40 mL Via	I (H ₂ SO ₄) x 100) mL Amber	x 250 mL Plastic		11	A	Г	1 1.	1. 1
//							/		Diop wat	er ler	el to	4. Lon
				Approval and Distri	bution				Drop water to 5	1 2 3	D	
				. approver and Diau					to 5	tepan	X	
Fieldwo	ork Staff Signatu	ure	Date		Checker Na	ame and Signat	ture	Date	-			
Projec	ct Manager Sigr	nature	Date	Distr	ibution: Project Ce	entral File						

L'OM

Q4AN(EV)-405-FM1

roject Name:	OFES	GW Monit	oring Proje	ect Number:	60609758		PM Name:		1000		Sample Date:	10000	
lient:	QFES			ect Location:	A	ensite	Fieldwork S	Staff:		NK	Well Developm	ent or Well Sa	mpling Event? (circl
ment:			formation	CC Ebbauon.	and the second sec	meter Info.	and the second second second second	mination	1000	Sampling Method	COLOR DE COLOR DE COLOR	Hydraslee	ve info.
ate of GW Lev	and the second s		Bore Radius (mm):	-	Chem Kit Serial	No.:	-	ntaminated	F1	Low Flow Pump rate:	Hydrasleeve	Size: 🔿	Monitoring sequen followed (number i
epth to GW (n			Screen Interval (m):		Chem Kit Mode	1:	PI Dedic			Intake depth:	Hydrasleeve	Туре:	order):
ore Depth (m-			Casing Radius (mm)):	Corrected Red	ox: Y / N		osable	FI	Bailer FI Hydrasleev	ve Sampling De	epth (m-pvc):	Gauging
epth to Produc			Cover Type (gatic/sti		(The correction to	apply is probe depend		r (specify)	FT	Peristaltic Pump Waterra	Hydrasleeve	Install time:	Hydrasleeve ir
roduct Thickne			Bore Locked (YES/N		-	hod: FI Downhol		<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>		Other (specify)	Sampling St	art Time:	Hydrasleeve o
Toddet Thekik	c33 (m).		Key Type (if applicab			■ Retrieve							Parameters
Colculated bo	re volume (L):		Includes/ excludes		circle)	# purge volumes			Tota	I purged volume (L):			
alculated bo		Section of the section of the	includes/ excludes	bore annoids (c			ality Parame	ters					
Time	Cumulative Vol. Removed (L)	SWL (m-pvc)	Pump Rate	DO (ppm or mg/L)	E.C. (mS/cm or μS/cm)	рН	Redox (mV)	Temp °C	;		Odour, Colour,	Turbidity	
				(Dn	17								
14:22	7.5	4.191	~1/3	3.08	259.3	6-30	123.4	27 3	8				
U.	8.5	4.25	()	2.82	257.3	6-31	126.1	27.1		- Slowed dieu	n abit	mone.	
14:27	9.0		23	3.12	254.9	6-29	128.3	27.5					
		4.24			254.8		V.	27.6					
14:37	9.5	4.24	5 11	3.26	-679.0	6.00	130-5	LTC	-				
				close *	v			0.0					
					- Sample	d @ 149	0@	9.56.					
					1								
					1.00/	± 0.05	± 10 mV	± 0.2 °C	0	±1	10% turbidity (if using	a turbidity meter)	
	and the second se		Parameter Range	the second s	± 3%	10.05		C Informati	-		Field Corr		
Analy	tes Sampled f		and a start of the second	Bottles Co						Bore volume calcula	ation, bore condition,	and the second	x correction etc.
Field Filtered:	Unfiltered:	1	x 40 mL Vial (H0		mL Ferrous	x 60 mL metals (HNC	₃₎	1/					
	//	11	x 40 mL Vial (H ₂	₂ SO ₄) x 10	0 mL Amber	x 250 mL Plastic		11					
1	/ /	V					- 1	1					
	l			Approval and Dist	ribution		and the second		10200	1		/	
				- approver and brot						1	///		
Fields	work Staff Signat	ture	Date		Checker	Name and Signatur	e	Date		1	10		
Fieldy	NUL SLAII SIGILA	uic	2200								6		
	ject Manager Sig		Date		tribution: Project	Control File				1			

JM

Q4AN(EV)-405-FM1

Jurn

									Peri prop	Bore ID:	mwog
roject Name:	QFE	S GW Monito	ring Proje	ct Number:	60609758	3	PM N	lame:	James Peachey	Sample Date:	7/8/19
illent:	QFE		LONCOLD.	ct Location:	Prose	apihe	Field	work Staff:	/ NK	Well Development o	or Well Sampling Event? (circl
		ral Bore In	ormation		Par	ameter Info.	De	contamination	Sampling Method		lydrasleeve info.
Date of GW Le		1	ore Radius (mm):	200	Chem Kit Seria	1 No .: 19(101)	2 5	Decontaminated	Low Flow Pump rate: 1/2	Hydrasleeve Size:	Monitoring sequent
Depth to GW (r			creen Interval (m):	1	Chem Kit Mode	al: YEI Propl	NS II	Dedicated	Intake depth: 🤇	Hydrasleeve Type	order): /
ore Depth (m-	1.1.		asing Radius (mm):		Corrected Rec	tox: Y / N	FI	Disposable	FI Bailer FI Hydrask	eeve Sampling Depth (n	
epth to Produ			over Type (gatio/stic		(The correction to	o apply is probe dep	endent) 💵	Other (specify)	Peristaltic Pump " Waterra	Hydrasleeve Insta	Il time: Hydraşleeve in
roduct Thickn	ess (m):		ore Locked (YES/N		Parameter me	thod: 🗾 Dowr			Cher (specify)	Sampling Start Tin	ne: Hydrasleeve ou
		ĸ	ey Type (if applicab	e): 🚤		I Retrie	eved				Parameters
Calculated bo	re volume (L):	Ir	cludes/ excludes	bore annulus (o	circle)	# purge volum			Total purged volume (L):		
				T	E.C.	Water	Quality Pa	rameters			
Time	Cumulative Vol. Removed (L)	SWL (m-pvc)	Pump Rate	DO (ppm or mg/L)	(mS/cm or µS/cm)	pН	Redox (mV)	Temp °C		Odour, Colour, Turbidi	Ity
12:31	D	2.686	1 1/2	U	/	-	-				
12:36	0.5	3.92	2 1/3	2.50	322.8	6.33	138.	4 26.4	Orange Brown.	Med-High to	inbidity, no sheer
12:41	0.15	4.002	~ ~ ~	2.28	318.0	6.31	137.5		Slowed owns a	nun to love	st speed. SWL S
12:46	1.75	4.077		2.23	314	6.28	137-		the Will purge		rehave.
12:49	2.25	4.140		2.15	315	6.27	137.4	-		t louis i l	certary.
12:52	2.75	4.23	~	2.20	315-4	6.26	136.5	3 26.3	11 High -	tubidity.	
12:55	3.00	4.315	×*	1.99	312.3	6.24	137.	2 26.3			
12:58	3,50	4.421		1.90	309-7	6.24	137.	2 26.4			
13:01	4.0	4.49	~ ~	2.08	305-2	6.23	137.	2 26.3			
13:04	4.5	4.57	5 "	2.03	295.3	6.22	132-1	6 26.3			
15:07	5.0	4.631	76	2-26	290.0	6-22	138.	1 263	tpurged dow	in to 4.75	A leave to reherry
13:12	5.75	4.751	1	2-30	287.9	6.21	139.	0 26.3	, left to rec	have	
1620		3.5-		2.29	292.6	6.22	162.	8 26.0	(Grab sample	2 with period	rump
	and an international share when the	CONTRACTOR OF THE OWNER.	arameter Range:	and the second se	± 3%	± 0.05	± 10 mV	± 0.2 °C		10% turbidity (if using a turbid	
Analyt	tes Sampled fo	DD):	and the second	Bottles Col	lected	Reality Contraction	Q/	A/QC Informatio	n	Field Commets	
eld Filtered;	Unfiltered:	1/-	x 40 mL Vial (HCI)	x 60 r	nL Ferrous	x 60 mL metals (H	NO ₃)	1	Bore volume calcul	ation, bore condition, fate of tu	ubing, redox correction etc.
11	/		x 40 mL Vial (H ₂ S	D ₄) x 100	mL Amber	x 250 mL Plastic		1/		n/	
11	1							11		1/	
	· · · · · · · · · · · · · · · · · · ·						/				
			A	proval and Distril	oution						
	1.01.00										
Fieldwo	ork Staff Signatu	Ire	Date		Checker N	ame and Signatu	re	Date			

Page 1 of 1

Instrument	YSI Quatro Pro Plus
Serial No.	11K100830

Item	Test	Pass	
Battery	Charge Condition	1 435	Comments
	Fuses	1	
	Capacity	4	
Switch/keypad	Operation	1	
Display	Intensity	✓	
	Operation (segments)	¥	
Grill Filter	Condition	\checkmark	
PCB	Seal	✓	
	Condition	\checkmark	
Connectors	Condition	\checkmark	
Sensor	1. pH	\checkmark	
	2. mV	1	
	3. EC	\checkmark	
	4. D.O	\checkmark	
	5. Temp	1	
Alarms	Beeper		
	Settings		
Software	Version		
Data logger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor 1. pH 7.00	Serial no	Standard Solutions	Certified	Solution Bottle Number	Instrument Reading
2. pH 4.00		pH 7.00	NIST	320613	pH 7.00
3. mV		pH 4.00	NIST	307927	pH 4.00
4. EC		240mV	NIST	325420/325421	240mV
6. D.O		2.76mS	NIST	304153	2.76mS
7. Temp		0 ppm	NIST	5928	0 ppm
		24.oC	NIST	MultiTherm 09000528	24.oC

Calibrated by:

-

Nikhil Mruthyunjayappa

Calibration date:

15/07/2019

Next calibration due: 11/01/2020

Oil / Water Interface Meter

InstrumentInterface Meter (30M)Serial No.224606

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass	Comments
Battery	Compartment	V	comments
	Capacity	1	
Probe	Cleaned/Decon.	1	
	Operation	1	
Connectors	Condition	1	
		\checkmark	
Tape Check	Cleaned	1	
	Checked for cuts	✓	
Instrument Test	At surface level	✓	

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

 Calibrated by:
 Nikhil Mruthyunjayappa

 Calibration date:
 15/07/2019

 Next calibration due:
 13/09/2019

Gas Detection Air Sampling & Monitoring Environmental & Water Quality Monitoring

airmet

Air-Met Scientific Pty Ltd

Ph 1300 137 067

Multi Parameter Water Meter

Instrument	YSI Quatro Pro Plus
Serial No.	11K100831

ltem	Test	Pass	Comments
Battery	Charge Condition	\checkmark	o o minorito
	Capacity	1	
Switch/keypad	Operation	1	
Display	Intensity	✓	
	Operation (segments)	✓	
	Seal	✓	
Connectors	Condition	1	
Sensor	1. pH	✓	
	2. mV	\checkmark	
	3. EC/Temp.	1	
	4. D.O	✓	
Alarms	Beeper	✓	
	Settings	1	
Software	Version	1	
Data logger	Operation	1	
Download	Operation	1	
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle Number	Instrument Reading
1. pH 7.00		pH 7.00	NIST	320613	pH 7.00
2. pH 4.00		pH 4.00	NIST	320612	pH 4.00
3. mV		240mV	NIST	325420/325421	240mV
4. EC		2.76mS	NIST	304153	2.76mS
6. D.O		0 ppm	NIST	5928	0 ppm
7. Temp		22.6oC	NIST	MultiTherm 09000528	

Calibrated by:

Nikhil Mruthyunjayappa

Calibration date: 15-Jul-19

Next calibration due: 11-Jan-20

Instrument PhoCh Serial No. T-1141

PhoCheck Tiger T-114169

Air-Met Scientific Pty Ltd 1300 137 067

ltem	Test	Pass			Comment	°S
Battery	Charge Condition	1			oonnicht	
	Fuses	1				
	Capacity	1				
	Recharge OK?	1				
Switch/keypad	Operation	✓				
Display	Intensity	1				
	Operation (segments)	1				
Grill Filter	Condition	1				
	Seal	~				
Pump	Operation	~				
	Filter	1				
	Flow	1				
	Valves, Diaphragm	1				
PCB	Condition	1				
Connectors	Condition	1				
Sensor	PID	✓	10.6 ev			
Alarms	Beeper	✓	Low	High	TWA	STEL
	Settings	1	50ppm	100ppm		
Software	Version	1	here and the second			
Data logger	Operation	1				
Download	Operation	1				
Other tests:						

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Diffusion mode Aspirated mode

Sensor	Serial no	Calibration gas and	Certified	Gas bottle	Instrument Reading
PID Lamp		concentration		No	
PID Lamp		93ppm Isobutylene	NIST	BR100	93.0ppm

Calibrated by:

Nikhil Mruthyunjayappa

Calibration date:

Next calibration due:

15/07/2019 14/08/2019

Gas Calibration Certificate

Instrument	MX4				
Serial No.	13054CJ-002				
Sensors	CO, H2S, O2, LEL				

Item	Test	Pass		Com	ments	
Battery	Charge Condition	1				
	Fuses	~				
	Capacity	√				
	Recharge OK?	~				
Switch/keypad	Operation	✓				
Display	Intensity	1				
	Operation (segments)	~				
Grill Filter	Condition	~				
	Seal	1				
PCB	Condition	1				
Connectors	Condition	1				
			Low	High	TWA	STEL
Sensor	Oxygen	✓	19.50%	23.50%	N/A	N/A
	Pentane	✓	5% LEL	10% LEL	N/A	N/A
	CO	1	30 ppm	60 ppm	30ppm	60ppm
	H2S	1	10 ppm	15 ppm	10ppm	15ppm
A1	Desman					
Alarms	Beeper	1				
0 - 4	Settings	1				
Software	Version					
Datalogger	Operation					
Download	Operation					
Other tests:						

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Diffusion mode	Aspirated mode				
Sensor	Serial no	Calibration gas and concentration	Certified	Gas bottle No	Instrument Reading
02		Fresh Air		Fresh Air	20.90%
LEL		25% LEL Pentane	NIST	BR133	25% LEL Pentane
CO		100ppm	NIST	BR133	100ppm
H2S		25ppm	NIST	BR133	25ppm

Calibrated by:

Braeden Curtis

Calibration date:

Next calibration due: 15/0

15/01/2020 0:00

16/07/19

AECOM

FQM - Water Quality Meter Calibration Record

ANZ

(

 \bigcirc

00

Q4AN(EV)-410-FM1

Project Name:	Arrow Q3 C	ME QEES	Project Number:		60603041, 2.3	- 60609758		
Project Location:	Surat 1	oscopihe	Client:		Arrow Energy	QFES		
PM Name:	Robert Bart			Nem Krco				
This calibration record is in	ntended to promp	t fieldwork staff to calibrate	water quality meter (WQM) o	ater quality meter (WQM) daily before the start of fieldworks.				
INSTRUMENT DET	AILS	A THE REAL PROPERTY.		A State Street Street				
Supplier:		Armet		and the second				
Make and Model:		451 Prople	K					
Serial Number:		196101112	4					
CALIBRATION				A MARKEN STREET, MARKEN	N. S.			
CALIBRATE WITH CA	LIBRATION SO	DLUTIONS			Alexandra and			
Date and Time:		7/8/19	11:45					
Parameter			Acidity	Conductivity	Dis	ssolved Oxygen		
Jnits		рН	рН	μS/cm	ppm	ppm		
Calibration Standard Co	oncentration:	4.0	7.0					
Calibration Reading:	•••••••••••••••••••••••••••••••••••••••	4.01	7.0					
Calibration Temperatur	e:	22.6	23.1					
ONGOING CHECKS				Contraction and the second				
and the second se								
BUMP TEST WITH CA		DLUTION			Maria Manageration			
and in the second se			:'4 c					
BUMP TEST WITH CA		7/8/19 11	Cu 5 Acidity	Conductivity	Dis			
BUMP TEST WITH CA		7/8/19 11		Conductivity µS/cm		solved Oxygen		
BUMP TEST WITH CA Date and Time: Parameter Units Calibration Standard Co	LIBRATION SO	7/8/19 11	Acidity pH	µS/cm	ppm	ssolved Oxygen		
BUMP TEST WITH CA Date and Time: Parameter Jnits	LIBRATION SO	7/8/19 (1 pH	Acidity pH 7.0	µS/cm	ppm ØZero			
BUMP TEST WITH CA Date and Time: Parameter Units Calibration Standard Co	DIBRATION SC	7/8/19 (1 pH 4.0	Acidity pH 7.0 7.0	µS/cm	ppm 07evo 0.03			
BUMP TEST WITH CA Date and Time: Parameter Units Calibration Standard Co Bump Test Reading: Bump Test Temperature COMMENTS	LIBRATION SO	7/8/19 (1 pH 4.0 3.87 17:5 x	Acidity pH 7.0 7.0B 22.49 ×	μS/cm 2531 2531 2531 22.5	ppm ØZero			
BUMP TEST WITH CA Date and Time: Parameter Units Calibration Standard Co Bump Test Reading: Bump Test Temperature COMMENTS	LIBRATION SO	7/8/19 (1 pH 4.0 3.87 17:5 x	Acidity pH 7.0 7.08 7.08 7.08 7.09 7.09	μS/cm 2531 2531 2531 22.5	ppm 07evo 0.03			
BUMP TEST WITH CA Date and Time: Parameter Units Calibration Standard Co Bump Test Reading: Bump Test Temperature COMMENTS Retail any equipment faults	LIBRATION SO	7/8/19 (1 pH 4.0 3.87 12:5 X rce performed, change of 1	Acidity pH 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	μS/cm 2531 2531 2531 22.5	ppm 0.03 22.9			
BUMP TEST WITH CA Date and Time: Parameter Units Calibration Standard Co Bump Test Reading: Bump Test Temperature COMMENTS Tetail any equipment faults Tetail any equipment faults	LIBRATION SO	pH 4.0 3.87 22:5 X Ince performed, change of i	Acidity pH 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	μS/cm 2531 2531 22.5 provided.	ppm 0.03 22.9			

Appendix F

Surveying Report

Our Ref: 400571 Surveyed - Veris Date of Survey 8/8/19 Site Address: 102 Main St P Origin of Coordina	-			veris
Projection	MGA Zone 5	5		
Coordinate Datum	GDA94			
Height Datum	AHD			
Coordinate Origin	PM 10008	E 665 016.404	ŀm, N 7 743 294	.885m, Z 13.487m
Point ID	Easting (m)	Northing(m)	Elevation (m)	
MW01 CASING	665286.415	7743196.255	12.999	
MW01 Natural Surface Level	665286.230	7743196.267	13.056	
MW02 Natural Surface Level	665291.176	7743176.557	13.152	
MW02 CASING	665291.110	7743176.415	13.059	
MW03 CASING	665302.356	7743197.362	12.851	
MW03 Natural Surface Level	665302.481	7743197.363	12.918	
MW04 CASING	665288.943	7743140.165	12.955	
MW04 Natural Surface Level	665289.213	7743140.155	12.992	

Appendix G

Analytical Data Validation

Appendix G - Analytical Data Validation

G1.0 Introduction

The amended NEPM, Schedule B [2]) Guideline on Site Characterisation (2013) specifies that the nature and quality of the data produced in an investigation should be determined by the data quality objectives (DQOs). As referenced by the NEPM, the DQO process is detailed in the United States Environmental Protection Agency (US EPA) *Guidance on Systematic Planning Using the Data Quality Objectives Process (EPA QA/G-4 : EPA/240/B-06/001), February 2006.*

The US EPA defines the process as 'a strategic planning approach based on the Scientific Method that is used to prepare for a data collection activity. It provides a systematic procedure for defining the criteria that a data collection design should satisfy, including when to collect samples, where to collect samples, the tolerable level of decision errors for the study, and how many samples to collect'.

The process of establishing appropriate DQOs is defined by the US EPA (2006) according to the following seven steps:

The seven steps in defining DQOs

Ste p	Data Quality Objective Step
1	<i>State the problem</i> – Define the problem that necessitates the study; identify the planning team, examine budget, schedule.
2	<i>Identify the goal of the study</i> – State how environmental data will be used in meeting objectives and solving the problem, identify study questions, define alternative outcomes.
3	Identify information inputs – Identify data & information needed to answer study questions.
4	Define the boundaries of the study – Specify the target population & characteristics of interest, define spatial & temporal limits, scale of inference.
5	Develop the analytic approach – Define the parameter of interest, specify the type of inference, and develop the logic for drawing conclusions from findings.
6	Specify performance or acceptance criteria – Develop performance criteria for new data being collected or acceptable criteria for existing data being considered for use.
7	Develop the plan for obtaining data – Select the resource-effective sampling and analysis plan that meets the performance criteria.

The approach adopted relative to the seven steps presented above is discussed below.

G1.1 Step 1 – State the Problem

A report prepared by QFES in November 2018 indicated that PFAS was detected in water held within the Case 4 Pit at the fire station.

The findings of a review of the historical use of firefighting foams containing PFAS at the site have been documented in the PSI report (AECOM, 2019) and it was identified that there was the potential for PFAS to have been released to ground. The extent of the potential presence of PFAS in the different environmental media (soil, groundwater, surface water and sediment) was not known and characterisation of potential source areas, boundary locations and downstream (for surface water) and down-gradient (for groundwater) was required to inform the potential presence of complete source-pathway-receptor linkages at the site.

G1.2 Step 2 - Identify the Goal of the Study

The overarching purpose of the works is to characterise the potential for PFAS impacts, including concentration and distribution in environmental media (soil, groundwater, surface water and sediment), within and at the boundary of the site.

G1.3 Step 3 – Identify Information Inputs

To allow assessment of the data against the study goal listed in step 2 above, the following inputs have been considered:

- Anecdotal information on historical operations provided from interviews with personnel familiar with the fire stations
- Observations made during the site inspections completed in January and February 2019
- The data review information (site and environmental setting) presented in the PSI report (AECOM, 2019) including:
 - Quantitative site characterisation data including visual observations, laboratory analytical data from field samples (samples of water from the Case 4 pit, comparison of analytical data with screening criteria appropriate for the land use
 - Hydrogeological and hydrological data for each of the six sites including inferred groundwater and surface water flow direction
 - The potential for preferential pathways e.g. stormwater drains.
- Tier 1 health and ecological investigation and screening levels of each protected beneficial use applicable within the boundary of the study area
- Soil and groundwater analytical results collected between July and August 2019 as presented in this DSI report.

G1.4 Step 4 – Define the Boundaries of the Study

The lateral extent of the study area defined for decision making is the physical area of the fire station (Lot on Plan boundaries) is outlined in figures in **Appendix A**. The vertical extent of the investigation is the depth to the shallow aquifer system – up to approximately 5m below ground level based on the available data.

The temporal boundary of the study is the current conditions at the time of the fieldwork in July – August 2019.

G1.5 Step 5 – Develop the Analytical Approach

The decision rules can be defined as:

- If the laboratory quality assurance/quality control data are within the acceptable ranges, the data should be considered suitable for use.
- If the PFAS concentrations are reported above the laboratory LOR or risk-based screening levels in one or more samples, then it should be considered whether further assessment is required.

The decision on the acceptance of the analytical data should be made on the basis of the Data Quality Indicators (DQIs) as follows:

- Precision: A quantitative measure of the variability (or reproducibility) of data.
- Accuracy: A quantitative measure of the closeness of reported data to the "true" value.
- **Representativeness**: The confidence (expressed qualitatively) that data are representative of each media present at each fire station.
- Completeness: A measure of the amount of useable data from a data collection activity.
- **Comparability**: The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event.

G1.5.1 Precision

Suitable criteria and/or performance indicators for assessment of precision include:

- Performance of intra-laboratory duplicate sample sets through calculation of relative percentage differences (RPDs).
- Performance of inter-laboratory duplicate sample sets through calculation of RPDs.
- The RPDs should be assessed as acceptable if less than or equal to 30% as per the NEPM Schedule B3. Where the results shows greater than 30% difference a review of the cause should be conducted (NEPC, 2013). It is noted that RPDs that exceed this range may be considered acceptable where:
 - results are less than 10 times the LOR (80%)
 - results are less than 20 times the LOR and the RPD is less than 50%
 - heterogeneous materials are encountered.

G1.5.2 Accuracy (Bias)

The closeness of the reported data to the "true" value is assessed through review of performance of:

- method blanks, which are analysed for the analytes targeted in the primary samples
- Matrix spikes and surrogate recoveries
- Laboratory control samples.

G1.5.3 Representativeness

To ensure the data produced by the laboratory is representative of conditions encountered in the field, the following steps are taken by the laboratory and subsequently reviewed by the Consultant:

- Blank samples should be run in parallel with field samples to confirm there are no unacceptable instances of laboratory cross contamination.
- Review of RPD values for field and laboratory duplicates to provide an indication that the samples are generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities.
- The appropriateness of collection methodologies, handling, storage and preservation techniques should be assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods).

G1.5.4 Completeness

In validating the degree of completeness of the analytical data sets acquired during the program the following is considered:

- Whether standard operating procedures (SOPs) for sampling protocols have been adhered to.
- Copies of all chain of custody (CoC) documentation are reviewed and presented.

It can therefore be considered whether the proportion of "useable data" generated in the data collection activities is sufficient for the purposes of assessing the problem as stated in Step 1 above.

G1.5.5 Comparability

Given that assessment data can comprise several data sets from separate sampling episodes, issues of comparability between data sets are reduced through adherence to SOPs and regulator endorsed or made guidelines and standards on each data gathering activity.

In addition, the data should be collected by experienced field staff familiar with PFAS contamination investigations and National Association of Testing Authorities (NATA) accredited laboratories should be employed in all laboratory programs for soil, sediment and water analysis.

G1.5.6 Step 6 – Specify Performance or Acceptance Criteria

Specific limits for this project are in accordance with the appropriate guidance made or endorsed by state and national regulations, appropriate indicators of data quality, and standard procedures for field sampling and handling.

This step also examines the certainty of conclusive statements based on the available new site data collected. This should include the following points to quantify tolerable limits:

- A decision can be made based on a certainty assumption of 95% confidence in any given data set. A limit on the decision error should be 5% that a conclusive statement may be a false positive or false negative.
- A decision error in the context of the decision rule presented above would lead to either underestimation or overestimation of the risk level associated with a particular sampling area.

Sampling errors may occur when the sampling program does not adequately detect the variability of a contaminant from point to point across the site. To address this, the SAQP presented in the PSI (AECOM, 2019) outlined minimum numbers of samples proposed to be collected from each media.

- As such, there may be limitations in the data if aspects of the SAQP cannot be implemented. Some examples of this scenario include but are not limited to:
 - Proposed surface water sample locations may be dry at the time of sampling; and
 - Proposed samples are not collected due to access being restricted to a given location.
- Limitations in ability to acquire useful and representative information from the data collected. The data are proposed to be collected from multiple locations and sample media. Some examples of this scenario include:
 - Measurement errors can occur during sample collection, handling, preparation, analysis and data reduction. To address this the following measures are proposed:
 - Collection of sufficient sample mass to facilitate analysis reported to standard laboratory detections limits. Collection of insufficient sample mass may result in raised detection limits.
 - Field staff to follow a standard procedure when collecting samples, including decontamination of tools, removal of adhered soil to avoid false positives in results, and use of appropriate sample containers and preservation methods.
 - Laboratories to follow a standard procedure when preparing samples for analysis and undertaking analysis.
- Laboratories to report quality assurance/ quality control data for comparison with the DQIs established for the project.

G1.5.7 Step 7 – Optimise the Design for Obtaining Data

The methodology is designed to meet the objectives described in **Section 1.3** of the main body of the report and to achieve the nominated DQOs. Optimisation of the data collection process should be achieved by:

- Working closely with the analytical laboratories and sampling equipment suppliers to ensure that appropriate procedures and processes are developed and implemented prior to and during the fieldwork, to ensure that sample handling, and transport to and processing by the analytical laboratories is as smooth as possible; and
- Conducting sampling according to the environmental consultant's SOPs for the type of sampling being conducted.

The scope of works should be carried out to a level of accuracy and confidence presented in the NEPM (NEPC, 2013).

G2.0 Assessment of Data Quality

The quality of the data collected as part of the investigations was assessed on a range of factors including:

- Documentation and data completeness
- Data quality comparability, representativeness, and precision and accuracy for sampling. Assessment criteria for data quality indicators for samples are listed below in the table below.

Acceptance Criteria for Data Quality Indicators in Laboratory Analysis

Data Quality Indicator	Acceptance Criteria
Rinsate Blanks	Less than the laboratory LOR
Intra laboratory field duplicates ⁽¹⁾ (3)	RPD less than \pm 30-50% (where results > 10 x LOR) ⁽²⁾
Laboratory Duplicates	RPDs in conformance with criteria in the laboratory QC report
Matrix Spikes	Recoveries between 70-130% of the theoretical recovery or as nominated in the laboratory's QC report
Method Blanks	Less than the laboratory LOR
Laboratory Control Samples	Recoveries between laboratory-specified range for each particular analyte / analytical suite.
Surrogate Spikes	Recoveries for surrogates are test dependent and are based on USEPA Method SW846. Control limits are dynamic and vary for individual tests but are within the criteria described in USEPA Method SW846.

Notes:

1. Potential exceptions to this criterion may occur where sample variation or heterogeneity, rather than poor laboratory performance, is accountable for the poor reproducibility, or where the results are close to the LOR. This typical RPD range is obtained from AS 4482.1-2005 Guide to the investigation and sampling of sites with potentially contaminated soil.

2. If the results are close to the LOR, then higher results will be accepted.

3. Criteria for sample duplicate and matrix spike results assume no sample heterogeneity. If samples are found to be heterogeneous with respect to a particular analyte the above criteria does not apply.

4. Assumes that samples are homogeneous and the background analyte level is less than 20% of the spike level (refer to USEPA Method 8000B). Note that there is no requirement for matrix spikes to pass as certain matrices may preclude recovery of spiked compounds. In this case, data will be accepted if LCS data meets the acceptance criteria.

5.80% of the compounds tested must fall within the control limits. Control limits are dynamic and vary for individual tests as per USEPA Method 8000B.

5. Decision errors may include collecting samples that are not representative of the contamination status of the material and/or analytical errors.

G3.0 Field QA/QC Data Assessment

G3.1 General

All work completed as part of the project was conducted in accordance with standard AECOM environmental sampling protocols. The essential elements of the QA/QC program are presented in the table below.

Essential Elements of the Field QA/QC Program

Action	Description
Use of Experienced Personnel	Fieldwork was undertaken by trained AECOM engineers/scientists with previous experience in contaminated site assessment, field sampling techniques and health and safety issues.
Record Keeping	Full records of all field activities including sample collection and photo log are maintained on standard field activity sheets.
Sample Collection	New nitrile gloves were worn during soil and groundwater sampling and were replaced between each sample collection.
Sample Labelling	A unique sample number was used for each sample to specify the sample origin (soil bore/monitoring well number and date), preservation standards and analytical requirements.
Chain of Custody	Chain of Custody procedures are required for all sample transfers. Custody sheets list sample numbers; date of collection and analyses required and are signed by each individual transferring and accepting custody.
Sample Storage	The collected samples were transferred to laboratory supplied sampling containers with appropriate preservation as required and then placed in cool storage prior to transfer to a NATA accredited laboratory (ALS and NMI).
Decontamination	All non-dedicated field equipment used in the sampling process was decontaminated using de-ionised water prior to mobilisation and between sampling locations to reduce the risks of cross contamination.

In addition to the primary samples, quality control field duplicate samples were collected to assess aspects of field protocols and laboratory performance and to classify the validity of the laboratory data. Field duplicates were collected in general accordance with AS 4482.1-2005 *Guide to the investigation and sampling of sites with potentially contaminated soil* (Standards Australia 2005).

G3.2 Handling and Sample Preservation

The laboratories reported that all samples were received in appropriately pre-treated and preserved containers

Samples were received preserved and chilled at the laboratory. The sample temperature readings recorded on the Sample Receipt Notification (SRN) ranged from 1.2°C and 1.4°C with ice present.

G3.3 Frequency of Field Quality Control Samples

Field duplicate samples (intra-laboratory duplicates) and field triplicate samples (inter-laboratory duplicates) were collected and labelled so that they could not be linked to their respective primary samples.

Field duplicate and triplicate samples were collected as 1 duplicate and triplicate sample per 10 primary samples (10%) prepared in the field by equally splitting the primary field samples. A summary of the actual duplicate and triplicate analysis frequency undertaken during this investigation is presented in the table below. The table shows that the sufficient number of field QC samples was collected.

Media	No of Primary Samples	No of Duplicate Samples	% Duplicate Samples	No of Triplicate Samples	
Soil Samples	14	2	14	2	14
Groundwater Samples	4	1	25	1	25

Summary of Duplicate and Triplicate Samples

Relative Percentage Difference (RPD) Calculations

A RPD analysis of primary and duplicate/triplicate samples is used to measure the representativeness and/or precision of duplicate samples. The RPD is calculated from the absolute difference between results of the duplicate pair divided by the mean value of the duplicate pair.

 $RPD (\%) = 100 \times (D1-D2) / ((D1+D2) / 2)$

Where: D1 = primary sample analysis, D2 = duplicate sample analysis

AS 4482.1-2005 states that the typical RPD which can be expected from acceptable field duplicates is $< \pm 30$ - 50% of the mean concentration of the analyte, where the results are greater than ten times the limit of reporting (LOR).

The acceptable ranges adopted are:

- 80% for laboratory duplicates between 0-10 x LOR.
- 50% for laboratory duplicates between 10-30 x LOR.
- 30% for laboratory duplicates greater than 30 x LOR.
- All other RPD calculations were either not calculable, due to the primary or duplicate sample reporting concentrations of COPC less than the LOR or within the expected range of 0- 30% for all other analytes reported.

Evaluation of the soil dataset is presented in **Table G1**. There were no non-conformances identified. The RPD results for water samples are provided in **Table G2** with the RPD non-conformances summarised in the table below.

Summary of key PFAS RPD non-conformances

		-			RPD (%)		
Primary Sample ID	QC sample ID	Туре	PFBS	PFPeS	PFHpS	PFOS	PFOA
PR_MW02_190807	PR_QC204_190807	Water	31%	46%	76%	40%	47%

The RPD non-conformance for the water samples may be attributed to the different extraction methodologies by different laboratories. Conservatively, where significant differences between the primary and duplicate samples have been recorded, the highest concentration has been considered in the assessment of groundwater results.

The RPD results are not considered to impact on data interpretation for this investigation but do demonstrate that difference in laboratory analysis and extraction methods in groundwater samples should be considered in assessing the contamination status of the site.

G3.4 Rinsate Blank Samples

To assess the effectiveness of sampling procedures, four rinsate blank samples were collected, on days when sampling equipment was used. Rinsate blanks were collected from sampling equipment which was decontaminated and re-used by passing laboratory supplied deionised water over the sampling equipment following decontamination procedures. The rinsate samples were analysed for PFAS.

The analytical results for PFAS compounds recorded for the rinsate blank samples are presented in **Table G3**, attached. All results for the rinsate samples were below the LOR. The data are deemed acceptable for interpretative use and not considered to impact on data interpretation for this investigation.

G4.0 Laboratory QA/QC

The analytical data was received from the laboratories as the following laboratory batches:

ALS- EB1919842, EB1921187, EB1921176, EB1922105

NMI- AECO06_190802, AECO06_190816.

G4.1 Extraction and Analysis Holding Time

All samples were analysed within the holding times with the exception of EB1921187 where four samples exceeded the hold time for moisture content. As the samples were received within the recommended holding time for PFAS, the data quality is considered acceptable for the purpose of this investigation.

G4.2 Laboratory QA/QC

The laboratories used in the investigation (ALS for primary and duplicate samples and NMI for triplicate samples) are National Association of Testing Authorities (NATA) approved for the analyses required. Quality assurance procedures adopted by both primary and secondary analytical laboratories included analysis of blanks, duplicates, laboratory control samples, matrix spikes and surrogate spikes (for organics).

For this investigation, 18 primary and field quality control samples were submitted in two laboratory batches. The different types of laboratory QC samples and batches where one or more laboratory control samples were outside the limits are discussed below.

G4.2.1 Laboratory/Method Blanks

The quality control term Method/Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC type is to monitor potential laboratory contamination.

All the laboratory blanks were within the DQO limits for this investigation. Method blank concentrations were not detected above the LOR for all analytes.

G4.2.2 Laboratory Control Sample (LCS)

The quality control term Laboratory Control Sample (LCS) refers to a known, interference free matrix spiked with target analytes or certified reference material. The purpose of this QC type is to monitor method precision and accuracy independent of sample matrix. Accepted frequency of LCS samples is 1 in 20. With the exception of one batch (EB1921176) LCS recoveries were within the adopted DQO limits. Recoveries on five analytes (PFBA, MeFOSA, EtFOSA, MeFOSE, EtFOSE) were less than the lower control limit.

G4.2.3 Laboratory Duplicates

The quality control term laboratory duplicate refers to an intra-laboratory split sample randomly selected from the sample batch. Laboratory duplicates provide information on method precision and sample heterogeneity. Relative percentage differences (RPDs) are used to assess precision. Frequency of laboratory duplicate samples 1 in 10.

The RPDs for laboratory duplicate samples were within the limits for all analytes for all batches.

G4.2.4 Matrix Spikes

The quality control term Matrix Spike (MS) refers to an intra-laboratory split sample spiked with a representative set of target analytes. The purpose of this QC type is to monitor potential matrix effects on analyte recoveries. The samples undergo the same extraction and analysis procedures and the results are used to assess the method precision and bias. Spike recoveries are reported as a percent recovery. Frequency of MS samples is 1 in 20. With the exception of two batches (EB1919842 and EB1921176) all RPDs were within the limits for the analytes. The non-conformances included:

• EB1919842- anonymous soil sample with PFOS recovery not determined and PFTeDA and MeFOSE recovery were less than the lower data quality objectives.

• EB1921176- anonymous water sample with three analytes (PFUnDA, 6:2 FtS, 10:2 FtS) recovered greater than the upper data quality objective and one analyte (EtFOSAA) recovered less than the lower data quality objective.

G4.2.5 Surrogate Spikes

The quality control term Surrogate Spike (SS) refers to a compound added to a sample aliquot in known amounts before extraction and analysis. The compound should be similar in composition and behaviour to the target analyte but not naturally occurring in the sample. A surrogate is used to monitor the method performance for analysis of organic compounds. Spike recoveries are reported as a percent recovery.

All the SS recoveries were within the adopted DQO limits for all batches except for the two rinsate samples where recovery was less than the lower data quality objective. This is potentially due to the matrix of the particular sample rather than the surrogate recovery and as such does not affect the quality of the data for interpretative use.

G4.2.6 Frequency of Laboratory QC samples

The laboratory reported a sufficient frequency of quality control samples to assess whether the results have been reported to an acceptable accuracy and precision for all the batches.

G5.0 Conclusions

While non-conformances with the laboratory QA/QC have been identified, these nonconformances are not considered to adversely impact the purpose of the investigation with respect to comparison against the adopted assessment criteria. It is concluded that, for the purposes of this investigation, the data are suitable for interpretation and acceptable for use in this assessment.

														F	PFAS													
	PFBS	PFPeS	PFHxS	PFHpS	PFOS	PFDS	PFBA	PFPeA	PFHxA	РҒНрА	PFOA	PFNA	PFDcA	PFUnA	PFDoA	PFTrDA	PFTeDA	4:2 FTS	6:2 FTS	8:2 FTS	10:2 FTS	MeFOSAA	EtFOSAA	FOSA	N-Et-FOSA	N-Me-FOSA	N-Et-FOSE	N MAEOSE
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg
EQL	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.001	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0005	0.0005	0.0005	0.0005	0.0005	0.0002	0.0002	0.0002	0.0005	0.0005	0.0005	0.0

Report Number	Field ID	Туре	Date	1																											
EB1919842	PR_BH04_0.5 _190726	soil	26/07/2019	< 0.0002	< 0.0002	0.0007	< 0.0002	0.0017	< 0.0002	< 0.001	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0002	< 0.0002	< 0.0002	< 0.0005	< 0.0005	< 0.0005	< 0.0005
EB1919842	PR_QC100 _190726	soil	26/07/2019	< 0.0002	< 0.0002	0.001	< 0.0002	0.0016	< 0.0002	< 0.001	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0002	< 0.0002	< 0.0002	< 0.0005	< 0.0005	< 0.0005	<0.0005
RPD				0	0	35	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EB1919842	PR_BH04_0.5 _190726	soil	26/07/2019	< 0.0002	< 0.0002	0.0007	< 0.0002	0.0017	< 0.0002	<0.001	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0002	< 0.0002	< 0.0002	< 0.0005	< 0.0005	< 0.0005	< 0.0005
RN1242617	PR_QC200_190726	soil	26/07/2019	<0.001	<0.001	0.0015	<0.001	0.0029	<0.001	< 0.002	< 0.002	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.002	<0.002	< 0.002	< 0.002	<0.001	<0.001	<0.001	< 0.002	< 0.002	< 0.002	<0.001	<0.002	< 0.002	< 0.005	< 0.005
RPD				0	0	73	0	52	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EB1919842	PR_BH02_1.0 _190726	soil	26/07/2019	0.0014	0.0016	0.016	0.0008	0.0132	< 0.0002	< 0.001	< 0.0002	0.0012	< 0.0002	0.0004	0.0011	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0002	< 0.0002	< 0.0002	< 0.0005	< 0.0005	< 0.0005	< 0.0005
EB1919842	PR_QC101 _190726	soil	26/07/2019	0.0012	0.0016	0.0156	0.0008	0.0142	< 0.0002	<0.001	< 0.0002	0.001	< 0.0002	0.0004	0.0012	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0002	< 0.0002	< 0.0002	< 0.0005	< 0.0005	< 0.0005	< 0.0005
RPD				15	0	3	0	7	0	0	0	18	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EB1919842	PR_BH02_1.0 _190726	soil	26/07/2019	0.0014	0.0016	0.016	0.0008	0.0132	< 0.0002	< 0.001	< 0.0002	0.0012	< 0.0002	0.0004	0.0011	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0002	< 0.0002	< 0.0002	< 0.0005	< 0.0005	< 0.0005	< 0.0005
RN1242617	PR_QC201_190726	soil	26/07/2019	0.0014	0.0013	0.016	<0.001	0.015	<0.001	< 0.002	< 0.002	0.0012	<0.001	<0.001	0.0012	<0.001	< 0.002	<0.002	< 0.002	< 0.002	<0.001	<0.001	<0.001	< 0.002	< 0.002	< 0.002	<0.001	<0.002	< 0.002	< 0.005	< 0.005
RPD				0	21	0	0	13	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

*RPDs have only been considered where a concentration is greater than 1 times the EQL. **Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 81 (1 - 10 x EQL); 50 (10 - 30 x EQL); 30 (> 30 x EQL)) ***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

													PFA	lS													
PFBS	PFPeS	PFHxS	PFHpS	PFOS	PFDS	PFBA	PFPeA	PFHxA	РҒНрА	PFOA	PFNA	PFDcA	PFUnA	PFDoA	PFTrDA	PFTeDA	4:2 FTS	6:2 FTS	8:2 FTS	10:2 FTS	MeFOSAA	EtFOSAA	FOSA	N-Et-FOSA	N-Me-FOSA	N-Et-FOSE	N-MeFOSE
µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	ug/L	µg/L	µg/L	ug/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	u							
0.002	0.002	0.002	0.002	0.002	0.002	0.01	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.005	0.005	0.005	0.005	0.005	0.002	0.002	0.002	0.005	0.005	0.005	0.

Report Number	Field ID	Туре	Date																												
EB1921176035	PR_MW02_190807	water	7/08/2019	0.68	1.09	11.4	0.8	37.6	<0.1	<0.5	0.26	0.99	0.23	0.55	0.35	<0.1	0.15	<0.1	<0.1	<0.25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.25	<0.25	<0.25	<0.25
EB1921176038	PR_QC104_190807	water	7/08/2019	0.68	1.01	10.9	0.713	34.9	<0.01	0.12	0.252	0.981	0.241	0.557	0.386	0.017	0.111	<0.01	<0.01	< 0.025	<0.01	0.045	0.017	<0.01	<0.01	< 0.025	<0.01	<0.025	< 0.025	< 0.025	< 0.025
RPD				0	8	5	12	7	0	0	4	1	4	1	10	0	29	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EB1921176035	PR_MW02_190807	water	7/08/2019	0.68	1.09	11.4	0.8	37.6	<0.1	<0.5	0.26	0.99	0.23	0.55	0.35	<0.1	0.15	<0.1	<0.1	<0.25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.25	<0.25	<0.25	< 0.25
RN1244319	PR_QC204_190807	water	7/08/2019	0.5	0.68	9.8	0.36	25	< 0.001	0.15	0.23	0.92	0.22	0.34	0.3	0.027	0.12	<0.001	< 0.002	< 0.002	< 0.001	0.034	0.028	< 0.001	< 0.002	< 0.002	0.0016	< 0.002	< 0.002	< 0.005	< 0.005
RPD				31	46	15	76	40	0	0	12	7	4	47	15	0	22	0	0	0	0	0	0	0	0	0	0	0	0	0	0

*RPDs have only been considered where a concentration is greater than 1 times the EQL. **Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 81 (1 - 10 x EQL); 50 (10 - 30 x EQL); 30 (> 30 x EQL)) ***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

[PFAS														
	PFBS	PFPeS	PFHxS	PFHpS	PFOS	PFDS	PFBA	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDcA	PFUnA	PFDoA	PFTrDA	PFTeDA	4:2 FTS	6:2 FTS	8:2 FTS	10:2 FTS	MeFOSAA	EtFOSAA	FOSA	N-Et-FOSA	N-Me-FOSA	N-Et-FOSE	N-MeFOSE	Sum of PFAS
	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	ug/L	µg/L	µg/L	ug/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	ug/L	µg/L							
EQL	0.002	0.002	0.002	0.002	0.002	0.002	0.01	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.005	0.005	0.005	0.005	0.005	0.002	0.002	0.002	0.005	0.005	0.005	0.005	0.002

Lab Report Number	Field ID	Matrix Type	Date																													
EB1919842038	PR_QC300_190726	Rinsate	26/07/2019	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002	< 0.01	< 0.002	< 0.002	< 0.002	<0.002	<0.002	<0.002	< 0.002	< 0.002	< 0.002	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.002	< 0.002	< 0.002	< 0.005	< 0.005	< 0.005	< 0.005 <	<0.002
EB1919842039	PR_QC301_190726	Rinsate	26/07/2019	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002	< 0.01	< 0.002	< 0.002	< 0.002	<0.002	<0.002	<0.002	< 0.002	< 0.002	< 0.002	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.002	< 0.002	< 0.002	< 0.005	< 0.005	< 0.005	< 0.005 <	<0.002
EB1919842041	PR_QC302_190727	Rinsate	27/07/2019	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002	< 0.01	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	<0.002	< 0.002	< 0.002	< 0.002	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.002	< 0.002	< 0.002	< 0.005	< 0.005	< 0.005	< 0.005 <	:0.002
EB1921176039	PR_QC303_190807	Rinsate	7/08/2019	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002	< 0.01	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	<0.002	< 0.002	< 0.002	< 0.002	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.002	< 0.002	< 0.002	< 0.005	< 0.005	< 0.005	< 0.005 <	0.002

Appendix H

Analytical Laboratory Reports

ALSCompass SAMPLING Intelligence	npass			Environmental Division Brisbane Work Order Reterence EB1919842
Custody Document for Submissions via ALS Compass App	omissions via ALS Comp	ass App		Telephone · ~ 61-7-3243 7222
Project: 606909758 2.0 -7 Pr	Client: AECOM Pty Ltd	Project	Project Manager: James Peachey	
		Phone:	(0425 206 362	
ALS Compass COC Reference: <u>(</u>	# Samples:	Sampler: Phone:	: <u>Camden McCosker</u> (<u>0499 990 214</u>	114
Turnaround Requirements: Standard 5	5 Day Urgent			
Special Instructions:				
Custody:				
Relinquished by:	Received by:	Relinquished by:	Received by:	
Canden	Harden	Kenakr	m.Sinat	<i>i</i> +
Date / Time:	Date / Time:	Date / Time:	Date / Time:	9,40
	5460 61. t.18	1 pj-F-18	600 1/2/19	

Right Solutions - Right Partner

alsglobal.com/als-compass

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: EB1919842		
Client Contact Address	: AECOM Australia Pty Ltd : CAMDEN McCOSKER : Brisbane	Laboratory Contact Address	 Environmental Division Brisbane Carsten Emrich 2 Byth Street Stafford QLD Australia 4053
E-mail Telephone Facsimile	: camden.mccosker@aecom.com : :	E-mail Telephone Facsimile	: carsten.emrich@alsglobal.com : +61 7 3552 8616 : +61-7-3243 7218
Project Order number C-O-C number Site Sampler	: 6060958_PR : 60609758 2.0 : 2657 : : CAMDEN McCOSKER	Page Quote number QC Level	: 1 of 4 : EB2019AECOMAU0002 (BN/112/19) : NEPM 2013 B3 & ALS QC Standard
		Issue Date	: 01-Aug-2019

Client Requested Due Date	: 01-Aug-2019 09:40 : 08-Aug-2019	Scheduled Reporting Date	• 08-Aug-2019
Delivery Details			
Mode of Delivery	: Carrier	Security Seal	: Intact.
No. of coolers/boxes	: 3	Temperature	: 1.2°C; 0.1°C; 1.5°C - Ice present
Receipt Detail	: MEDIUM ESKY	No. of samples received / analysed	: 43 / 19

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please be advised, samples have been fowarded to NMI as requested on the Chain of Custody. This will incur a freight fowarding fee.
- Discounted Package Prices apply only when specific ALS Group Codes ('W', 'S', 'NT' suites) are referenced on COCs.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Analysis will be conducted by ALS Environmental, Brisbane, NATA accreditation no. 825, Site No. 818 (Micro site no. 18958).
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Any sample identifications that cannot be displayed entirely in the analysis summary table will be listed below.

uite (28 analytes)

EB1919842-021 · 27-Jul-2019 07:59 ; PR_BH01_0.25 _190727 Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

Matrix: SOII

laboratory and component	displayed in bra	ckets without a time	luested	103 int	EP231X (solids) Full Suite (28 and
Matrix: SOIL) SOIL sis rec	A055- Conte	231X ull Su
Laboratory sample ID	Client sampling date / time	Client sample ID	(On Hold) SOIL No analysis requested	SOIL - EA055-103 Moisture Content	SOIL - EP231X (solids) PFAS - Full Suite (28 a
EB1919842-001	26-Jul-2019 11:19	PR_BH04_0.1_190726	✓		
EB1919842-002	26-Jul-2019 11:19	PR_BH04_0.5_190726		✓	✓
EB1919842-003	26-Jul-2019 11:20	PR_BH04_1.0 _190726		✓	✓
EB1919842-004	26-Jul-2019 11:20	PR_BH04_1.5 _190726	1		
EB1919842-005	26-Jul-2019 13:21	PR_BH04_2.0 _190726	✓		
EB1919842-006	26-Jul-2019 13:22	PR_BH04_3.0 _190726	✓		
EB1919842-007	26-Jul-2019 13:22	PR_BH04_4.0 _190726	✓		
EB1919842-008	26-Jul-2019 13:23	PR_BH04_4.5 _190726	✓		
EB1919842-009	26-Jul-2019 13:23	PR_BH04_5.0 _190726		✓	✓
EB1919842-010	26-Jul-2019 13:44	PR_SS1_0.1 _190726		✓	✓
EB1919842-011	26-Jul-2019 13:44	PR_SS1_0.5 _190726		1	✓
EB1919842-012	26-Jul-2019 16:26	PR_BH02_0.3_190726	1		
EB1919842-013	26-Jul-2019 16:27	PR_BH02_0.5 _190726		1	✓
EB1919842-014	26-Jul-2019 16:28	PR_BH02_1.0 _190726		✓	✓
EB1919842-015	26-Jul-2019 16:28	PR_BH02_1.5_190726	1		
EB1919842-016	26-Jul-2019 16:48	PR_BH02_2.0 _190726	1		
EB1919842-017	26-Jul-2019 16:49	PR_BH02_3.0 _190726	1		
EB1919842-018	26-Jul-2019 16:49	PR_BH02_4.0 _190726	1		
EB1919842-019	26-Jul-2019 16:50	PR_BH02_5.0 _190726		1	1
EB1919842-020	26-Jul-2019 16:58	PR_BH02_6.0 _190726	1		
EB1919842-021	27-Jul-2019 07:59	PR_BH01_0.25 _190727		1	✓
EB1919842-022	27-Jul-2019 08:01	PR_BH01_0.5 _190727	1		
EB1919842-023	27-Jul-2019 08:01	PR_BH01_1.0 _190727		1	✓
EB1919842-024	27-Jul-2019 08:01	PR_BH01_1.5_190727	1		
EB1919842-025	27-Jul-2019 08:21	PR_BH01_2.0 _190727	1		
EB1919842-026	27-Jul-2019 08:22	PR_BH01_3.0 _190727	1		
EB1919842-027	27-Jul-2019 08:23	PR_BH01_4.0 _190727	1		
EB1919842-028	27-Jul-2019 08:23	PR_BH01_5.0 _190727		✓	✓
EB1919842-029	27-Jul-2019 10:43	PR_BH03_0.3_190727	✓		
EB1919842-030	27-Jul-2019 10:43	PR_BH03_0.5 _190727		✓	✓
EB1919842-031	27-Jul-2019 10:44	PR_BH03_1.0 _190727		✓	1
EB1919842-032	27-Jul-2019 10:44	PR_BH03_1.5 _190727	✓		
EB1919842-033	27-Jul-2019 11:11	PR_BH03_2.0 _190727	✓		

		, ,			
			(On Hold) SOIL No analysis requested	SOIL - EA055-103 Moisture Content	SOIL - EP231X (solids) PFAS - Full Suite (28 analytes)
EB1919842-034	27-Jul-2019 11:12	PR_BH03_3.0 _190727	✓		
EB1919842-035	27-Jul-2019 11:12	PR_BH03_4.0 _190727	✓		
EB1919842-036	27-Jul-2019 11:13	PR_BH03_5.0 _190727		✓	✓
EB1919842-037	26-Jul-2019 11:21	PR_QC100 _190726		✓	✓
EB1919842-040	26-Jul-2019 16:29	PR_QC101 _190726		✓	✓
EB1919842-042	27-Jul-2019 07:59	PR_QC102 _190727	✓		
EB1919842-043	27-Jul-2019 10:45	PR_QC103 _190727	✓		
Matrix: WATER			WATER - EP231X-LL (EB) PFAS - Full Suite Low Level (28 analytes)		
Laboratory sample ID EB1919842-038	Client sampling date / time 26-Jul-2019 13:20	Client sample ID	MATER PFAS -		
EB1919842-038	26-Jul-2019 13:20	PR_QC300_190726 PR_QC301_190726	✓ ✓		
EB1919842-039	27-Jul-2019 07:58	PR_QC302_190727	✓ ✓		
010012.071	2. 00. 2010 07.00		-		

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

ALS

Requested Deliverables

ACCOUNTS PAYABLE

ACCOUNTS PAYABLE		
- A4 - AU Tax Invoice (INV)	Email	AP_CustomerService.ANZ@aecom.
		com
CAMDEN McCOSKER		
 *AU Certificate of Analysis - NATA (COA) 	Email	camden.mccosker@aecom.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	camden.mccosker@aecom.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	camden.mccosker@aecom.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	camden.mccosker@aecom.com
- A4 - AU Tax Invoice (INV)	Email	camden.mccosker@aecom.com
- Chain of Custody (CoC) (COC)	Email	camden.mccosker@aecom.com
- EDI Format - ESDAT (ESDAT)	Email	camden.mccosker@aecom.com
- EDI Format - XTab (XTAB)	Email	camden.mccosker@aecom.com
JAMES PEACHEY		
 *AU Certificate of Analysis - NATA (COA) 	Email	james.peachey@aecom.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	james.peachey@aecom.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	james.peachey@aecom.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	james.peachey@aecom.com
- A4 - AU Tax Invoice (INV)	Email	james.peachey@aecom.com
- Chain of Custody (CoC) (COC)	Email	james.peachey@aecom.com
- EDI Format - ESDAT (ESDAT)	Email	james.peachey@aecom.com
- EDI Format - XTab (XTAB)	Email	james.peachey@aecom.com

CERTIFICATE OF ANALYSIS

Work Order	EB1919842	Page	: 1 of 13
Client	: AECOM Australia Pty Ltd	Laboratory	: Environmental Division Brisbane
Contact	: CAMDEN McCOSKER	Contact	: Carsten Emrich
Address	:	Address	: 2 Byth Street Stafford QLD Australia 4053
	Brisbane		
Telephone	:	Telephone	: +61 7 3552 8616
Project	: 6060958_PR	Date Samples Received	: 01-Aug-2019 09:40
Order number	: 60609758 2.0	Date Analysis Commenced	: 01-Aug-2019
C-O-C number	: 2657	Issue Date	: 08-Aug-2019 16:53
Sampler	: CAMDEN McCOSKER		
Site	:		
Quote number	: BN/112/19		
No. of samples received	: 43		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 19		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Minh Wills	2IC Organic Chemist	Brisbane Organics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• EP231X: Poor matrix spike recovery due to matrix interference. Confirmed by re-extraction and re-analysis.

Page	: 3 of 13
Work Order	: EB1919842
Client	: AECOM Australia Pty Ltd
Project	6060958_PR

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	PR_BH04_0.5 _190726	PR_BH04_1.0 _190726	PR_BH04_5.0 _190726	PR_SS1_0.1 _190726	PR_SS1_0.5 _190726
	Client sampling date / time				26-Jul-2019 11:20	26-Jul-2019 13:23	26-Jul-2019 13:44	26-Jul-2019 13:44
Compound	CAS Number	LOR	Unit	EB1919842-002	EB1919842-003	EB1919842-009	EB1919842-010	EB1919842-011
			-	Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 10	5-110°C)							
Moisture Content		0.1	%	23.1	20.4	20.1	13.3	18.3
EP231A: Perfluoroalkyl Sulfonic Acids	5							
Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	0.0004	0.0002
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	0.0007	0.0008	0.0006	0.0120	0.0054
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	0.0003	<0.0002
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	0.0017	<0.0002	0.0130	0.0672	0.0596
Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	0.0003	<0.0002
EP231B: Perfluoroalkyl Carboxylic Ac	cids							
Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	<0.001	<0.001	<0.001	<0.001
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	0.0004	0.0012
Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	0.0012	0.0037
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	0.0013
Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	0.0006	0.0020
Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	0.0008
Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	0.0008	0.0010
Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	0.0018	0.0004
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
EP231C: Perfluoroalkyl Sulfonamides								
Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	0.0024	<0.0002
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005

Page	: 4 of 13
Work Order	: EB1919842
Client	: AECOM Australia Pty Ltd
Project	: 6060958_PR

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Client sample ID Client sampling date / time		PR_BH04_0.5 _190726 26-Jul-2019 11:19	PR_BH04_1.0 _190726	PR_BH04_5.0 _190726 26-Jul-2019 13:23	PR_SS1_0.1_190726	PR_SS1_0.5 _190726
	C				26-Jul-2019 11:20			26-Jul-2019 13:44
Compound	CAS Number	LOR	Unit	EB1919842-002	EB1919842-003	EB1919842-009	EB1919842-010	EB1919842-011
				Result	Result	Result	Result	Result
EP231C: Perfluoroalkyl Sulfonamide	es - Continued							
N-Ethyl perfluorooctane	4151-50-2	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
sulfonamide (EtFOSA)								
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
EP231D: (n:2) Fluorotelomer Sulfor	nic Acids							
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
EP231P: PFAS Sums								
Sum of PFAS		0.0002	mg/kg	0.0024	0.0008	0.0136	0.0874	0.0756
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.0002	mg/kg	0.0024	0.0008	0.0136	0.0792	0.0650
Sum of PFAS (WA DER List)		0.0002	mg/kg	0.0024	0.0008	0.0136	0.0814	0.0732
EP231S: PFAS Surrogate								
13C4-PFOS		0.0002	%	86.0	78.0	91.5	75.5	70.0
13C8-PFOA		0.0002	%	75.5	92.5	80.5	82.0	75.0

Page	5 of 13
Work Order	: EB1919842
Client	: AECOM Australia Pty Ltd
Project	6060958_PR

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	nt sample ID	PR_BH02_0.5 _190726	PR_BH02_1.0 _190726	PR_BH02_5.0 _190726	PR_BH01_0.25 _190727	PR_BH01_1.0 _190727
	Cl	ient samplir	ng date / time	26-Jul-2019 16:27	26-Jul-2019 16:28	26-Jul-2019 16:50	27-Jul-2019 07:59	27-Jul-2019 08:01
Compound	CAS Number	LOR	Unit	EB1919842-013	EB1919842-014	EB1919842-019	EB1919842-021	EB1919842-023
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105	5-110°C)							
Moisture Content		0.1	%	16.3	12.8	20.8	23.8	11.2
EP231A: Perfluoroalkyl Sulfonic Acids	5							
Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	0.0014	0.0014	<0.0002	0.0004	0.0003
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	0.0006	0.0016	<0.0002	0.0008	0.0006
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	0.0003	0.0160	0.0013	0.0250	0.0110
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	0.0008	<0.0002	0.0009	0.0008
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	<0.0002	0.0132	0.0144	0.0408	0.0231
Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	0.0004	<0.0002
EP231B: Perfluoroalkyl Carboxylic Ac	ids							
Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	<0.001	<0.001	0.002	<0.001
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	0.0079	0.0013
Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	0.0004	0.0012	<0.0002	0.0085	0.0022
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	0.0038	0.0002
Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	0.0004	<0.0002	0.0032	0.0003
Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	0.0011	0.0004	0.0026	0.0005
Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	0.0010	<0.0002
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	0.0139	<0.0002
Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	0.0011	<0.0002
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	0.0616	<0.0002
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	0.0008	<0.0005
EP231C: Perfluoroalkyl Sulfonamides								
Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	0.0016	<0.0002
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005

Page	: 6 of 13
Work Order	: EB1919842
Client	: AECOM Australia Pty Ltd
Project	: 6060958_PR

Sub-Matrix: SOIL (Matrix: SOIL)		Client sample ID			PR_BH02_1.0 _190726	PR_BH02_5.0 _190726	PR_BH01_0.25 _190727	PR_BH01_1.0 _190727
	C	lient samplii	ng date / time	26-Jul-2019 16:27	26-Jul-2019 16:28	26-Jul-2019 16:50	27-Jul-2019 07:59	27-Jul-2019 08:01
Compound	CAS Number	LOR	Unit	EB1919842-013	EB1919842-014	EB1919842-019	EB1919842-021	EB1919842-023
			-	Result	Result	Result	Result	Result
P231C: Perfluoroalkyl Sulfonamid	es - Continued							
N-Ethyl perfluorooctane	4151-50-2	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
sulfonamide (EtFOSA)								
N-Methyl perfluorooctane	24448-09-7	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
sulfonamidoethanol (MeFOSE)								
N-Ethyl perfluorooctane	1691-99-2	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
sulfonamidoethanol (EtFOSE)								
N-Methyl perfluorooctane	2355-31-9	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
sulfonamidoacetic acid								
(MeFOSAA)								
N-Ethyl perfluorooctane	2991-50-6	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
sulfonamidoacetic acid								
(EtFOSAA)								
P231D: (n:2) Fluorotelomer Sulfor	nic Acids							
4:2 Fluorotelomer sulfonic acid	757124-72-4	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
(4:2 FTS)								
6:2 Fluorotelomer sulfonic acid	27619-97-2	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	0.0012	<0.0005
(6:2 FTS)								
8:2 Fluorotelomer sulfonic acid	39108-34-4	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	0.0010	<0.0005
(8:2 FTS)								
10:2 Fluorotelomer sulfonic acid	120226-60-0	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
(10:2 FTS)								
P231P: PFAS Sums								
Sum of PFAS		0.0002	mg/kg	0.0027	0.0357	0.0161	0.178	0.0403
Sum of PFHxS and PFOS	355-46-4/1763-23-	0.0002	mg/kg	0.0003	0.0292	0.0157	0.0658	0.0341
	1							
Sum of PFAS (WA DER List)		0.0002	mg/kg	0.0021	0.0322	0.0157	0.0938	0.0384
P231S: PFAS Surrogate								
13C4-PFOS		0.0002	%	82.5	73.5	86.5	92.0	89.0
13C8-PFOA		0.0002	%	80.5	81.5	95.5	82.5	75.0

Page	: 7 of 13
Work Order	: EB1919842
Client	: AECOM Australia Pty Ltd
Project	6060958_PR

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	PR_BH01_5.0 _190727	PR_BH03_0.5 _190727	PR_BH03_1.0 _190727	PR_BH03_5.0 _190727	PR_QC100 _190726
	C	lient samplii	ng date / time	27-Jul-2019 08:23	27-Jul-2019 10:43	27-Jul-2019 10:44	27-Jul-2019 11:13	26-Jul-2019 11:21
Compound	CAS Number	LOR	Unit	EB1919842-028	EB1919842-030	EB1919842-031	EB1919842-036	EB1919842-037
			-	Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 10	5-110°C)							
Moisture Content		0.1	%	16.2	19.6	13.9	21.3	22.9
EP231A: Perfluoroalkyl Sulfonic Acids	S							
Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	<0.0002	0.0002	<0.0002	<0.0002
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	0.0003	0.0004	<0.0002	<0.0002
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	0.0003	0.0048	0.0078	0.0010	0.0010
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	0.0018	0.0041	<0.0002	<0.0002
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	0.0056	0.196	0.0126	0.0170	0.0016
Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
EP231B: Perfluoroalkyl Carboxylic A	cids							
Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	<0.001	<0.001	<0.001	<0.001
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	0.0004	0.0003	<0.0002	<0.0002
Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	0.0017	0.0016	<0.0002	<0.0002
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	0.0002	0.0004	<0.0002	<0.0002
Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	0.0008	0.0027	<0.0002	<0.0002
Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	0.0220	0.0046	0.0003	<0.0002
Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	0.0015	<0.0002	<0.0002	0.0002	<0.0002
Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
EP231C: Perfluoroalkyl Sulfonamides								
Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005

Page	: 8 of 13
Work Order	: EB1919842
Client	: AECOM Australia Pty Ltd
Project	: 6060958_PR

Sub-Matrix: SOIL (Matrix: SOIL)		Client sample ID Client sampling date / time			PR_BH03_0.5 _190727	PR_BH03_1.0 _190727	PR_BH03_5.0 _190727	PR_QC100 _190726
	C				27-Jul-2019 10:43	27-Jul-2019 10:44	27-Jul-2019 11:13	26-Jul-2019 11:21
Compound	CAS Number	LOR	Unit	EB1919842-028	EB1919842-030	EB1919842-031	EB1919842-036	EB1919842-037
				Result	Result	Result	Result	Result
EP231C: Perfluoroalkyl Sulfonamid	es - Continued							
N-Ethyl perfluorooctane	4151-50-2	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
sulfonamide (EtFOSA)								
N-Methyl perfluorooctane	24448-09-7	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
sulfonamidoethanol (MeFOSE)								
N-Ethyl perfluorooctane	1691-99-2	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
sulfonamidoethanol (EtFOSE)								
N-Methyl perfluorooctane	2355-31-9	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
sulfonamidoacetic acid								
(MeFOSAA)								
N-Ethyl perfluorooctane	2991-50-6	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
sulfonamidoacetic acid								
(EtFOSAA)								
EP231D: (n:2) Fluorotelomer Sulfo								
4:2 Fluorotelomer sulfonic acid	757124-72-4	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
(4:2 FTS)								
6:2 Fluorotelomer sulfonic acid	27619-97-2	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
(6:2 FTS)								
8:2 Fluorotelomer sulfonic acid	39108-34-4	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
(8:2 FTS)								
10:2 Fluorotelomer sulfonic acid	120226-60-0	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
(10:2 FTS)								
EP231P: PFAS Sums								
Sum of PFAS		0.0002	mg/kg	0.0074	0.228	0.0347	0.0185	0.0026
Sum of PFHxS and PFOS	355-46-4/1763-23-	0.0002	mg/kg	0.0059	0.201	0.0204	0.0180	0.0026
Sum of PFAS (WA DER List)		0.0002	mg/kg	0.0059	0.204	0.0256	0.0180	0.0026
EP231S: PFAS Surrogate								
13C4-PFOS		0.0002	%	93.5	82.5	81.0	86.5	75.5
13C8-PFOA		0.0002	%	85.5	78.5	86.0	79.0	73.0
-								

Page	: 9 of 13
Work Order	: EB1919842
Client	: AECOM Australia Pty Ltd
Project	6060958_PR

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	PR_QC101 _190726	 	
	C	lient sampli	ng date / time	26-Jul-2019 16:29	 	
Compound	CAS Number	LOR	Unit	EB1919842-040	 	
				Result	 	
EA055: Moisture Content (Dried @ 105-	-110°C)					
Moisture Content		0.1	%	13.2	 	
EP231A: Perfluoroalkyl Sulfonic Acids						
Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	0.0012	 	
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	0.0016	 	
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	0.0156	 	
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	0.0008	 	
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	0.0142	 	
Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	 	
EP231B: Perfluoroalkyl Carboxylic Aci	ids					
Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	 	
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	 	
Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	0.0010	 	
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	 	
Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	0.0004	 	
Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	0.0012	 	
Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	 	
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	 	
Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	 	
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	 	
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	 	
EP231C: Perfluoroalkyl Sulfonamides						
Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	 	
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0005	 	

Page	: 10 of 13
Work Order	: EB1919842
Client	: AECOM Australia Pty Ltd
Project	6060958_PR

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	PR_QC101 _190726						
	C	lient sampli	ng date / time	26-Jul-2019 16:29						
Compound	CAS Number	LOR	Unit	EB1919842-040						
				Result						
EP231C: Perfluoroalkyl Sulfonamides - Continued										
N-Ethyl perfluorooctane	4151-50-2	0.0005	mg/kg	<0.0005						
sulfonamide (EtFOSA)										
N-Methyl perfluorooctane	24448-09-7	0.0005	mg/kg	<0.0005						
sulfonamidoethanol (MeFOSE)										
N-Ethyl perfluorooctane	1691-99-2	0.0005	mg/kg	<0.0005						
sulfonamidoethanol (EtFOSE)										
N-Methyl perfluorooctane	2355-31-9	0.0002	mg/kg	<0.0002						
sulfonamidoacetic acid										
(MeFOSAA)										
N-Ethyl perfluorooctane	2991-50-6	0.0002	mg/kg	<0.0002						
sulfonamidoacetic acid										
(EtFOSAA)										
EP231D: (n:2) Fluorotelomer Sulfor	nic Acids									
4:2 Fluorotelomer sulfonic acid	757124-72-4	0.0005	mg/kg	<0.0005						
(4:2 FTS)										
6:2 Fluorotelomer sulfonic acid	27619-97-2	0.0005	mg/kg	<0.0005						
(6:2 FTS)										
8:2 Fluorotelomer sulfonic acid	39108-34-4	0.0005	mg/kg	<0.0005						
(8:2 FTS)										
10:2 Fluorotelomer sulfonic acid	120226-60-0	0.0005	mg/kg	<0.0005						
(10:2 FTS)										
EP231P: PFAS Sums										
Sum of PFAS		0.0002	mg/kg	0.0360						
Sum of PFHxS and PFOS	355-46-4/1763-23-	0.0002	mg/kg	0.0298						
	1									
Sum of PFAS (WA DER List)		0.0002	mg/kg	0.0324						
EP231S: PFAS Surrogate										
13C4-PFOS		0.0002	%	85.5						
13C8-PFOA		0.0002	%	83.5						

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	PR_QC300_190726	PR_QC301 _190726	PR_QC302_190727	
	Cl	lient sampli	ng date / time	26-Jul-2019 13:20	26-Jul-2019 13:21	27-Jul-2019 07:58	
Compound	CAS Number	LOR	Unit	EB1919842-038	EB1919842-039	EB1919842-041	
				Result	Result	Result	
EP231A: Perfluoroalkyl Sulfonic Acids							
Perfluorobutane sulfonic acid	375-73-5	0.002	µg/L	<0.002	<0.002	<0.002	
(PFBS)							
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.002	µg/L	<0.002	<0.002	<0.002	
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.002	µg/L	<0.002	<0.002	<0.002	
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.002	µg/L	<0.002	<0.002	<0.002	
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.002	µg/L	<0.002	<0.002	<0.002	
Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.002	µg/L	<0.002	<0.002	<0.002	
EP231B: Perfluoroalkyl Carboxylic Acid	ls						
Perfluorobutanoic acid (PFBA)	375-22-4	0.01	µg/L	<0.01	<0.01	<0.01	
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.002	µg/L	<0.002	<0.002	<0.002	
Perfluorohexanoic acid (PFHxA)	307-24-4	0.002	µg/L	<0.002	<0.002	<0.002	
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.002	µg/L	<0.002	<0.002	<0.002	
Perfluorooctanoic acid (PFOA)	335-67-1	0.002	µg/L	<0.002	<0.002	<0.002	
Perfluorononanoic acid (PFNA)	375-95-1	0.002	µg/L	<0.002	<0.002	<0.002	
Perfluorodecanoic acid (PFDA)	335-76-2	0.002	µg/L	<0.002	<0.002	<0.002	
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.002	µg/L	<0.002	<0.002	<0.002	
Perfluorododecanoic acid (PFDoDA)	307-55-1	0.002	µg/L	<0.002	<0.002	<0.002	
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.002	µg/L	<0.002	<0.002	<0.002	
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.005	µg/L	<0.005	<0.005	<0.005	
EP231C: Perfluoroalkyl Sulfonamides							
Perfluorooctane sulfonamide (FOSA)	754-91-6	0.002	µg/L	<0.002	<0.002	<0.002	
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.005	µg/L	<0.005	<0.005	<0.005	
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.005	µg/L	<0.005	<0.005	<0.005	

Page	: 12 of 13
Work Order	: EB1919842
Client	: AECOM Australia Pty Ltd
Project	: 6060958_PR

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	PR_QC300_190726	PR_QC301 _190726	PR_QC302_190727	
	Cl	ient sampli	ng date / time	26-Jul-2019 13:20	26-Jul-2019 13:21	27-Jul-2019 07:58	
Compound	CAS Number	LOR	Unit	EB1919842-038	EB1919842-039	EB1919842-041	
				Result	Result	Result	
EP231C: Perfluoroalkyl Sulfonamides	- Continued						
N-Methyl perfluorooctane	24448-09-7	0.005	µg/L	<0.005	<0.005	<0.005	
sulfonamidoethanol (MeFOSE)							
N-Ethyl perfluorooctane	1691-99-2	0.005	µg/L	<0.005	<0.005	<0.005	
sulfonamidoethanol (EtFOSE)							
N-Methyl perfluorooctane	2355-31-9	0.002	µg/L	<0.002	<0.002	<0.002	
sulfonamidoacetic acid							
(MeFOSAA)							
N-Ethyl perfluorooctane	2991-50-6	0.002	µg/L	<0.002	<0.002	<0.002	
sulfonamidoacetic acid							
(EtFOSAA)							
EP231D: (n:2) Fluorotelomer Sulfonio							
4:2 Fluorotelomer sulfonic acid	757124-72-4	0.005	µg/L	<0.005	<0.005	<0.005	
(4:2 FTS)				0.005	0.005	0.005	
6:2 Fluorotelomer sulfonic acid	27619-97-2	0.005	µg/L	<0.005	<0.005	<0.005	
(6:2 FTS)		0.005		<0.005	<0.005	<0.005	
8:2 Fluorotelomer sulfonic acid	39108-34-4	0.005	µg/L	<0.005	<0.005	<0.005	
(8:2 FTS)	400000 00 0	0.005	μg/L	<0.005	<0.005	<0.005	
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.005	µg/L	~0.005	~0.005	~0.005	
EP231P: PFAS Sums Sum of PFAS		0.002	ug/l	<0.002	<0.002	<0.002	
Sum of PFAS Sum of PFHxS and PFOS		0.002	μg/L		<0.002	<0.002	
Sum of Prnx5 and Pr05	355-46-4/1763-23-	0.002	µg/L	<0.002	<0.00Z	SU.UUZ	
Sum of PFAS (WA DER List)		0.002	μg/L	<0.002	<0.002	<0.002	
EP231S: PFAS Surrogate							
13C4-PFOS		0.002	%	87.0	73.6	83.7	
13C8-PFOA		0.002	%	101	92.1	98.8	

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery Limits (%)		
Compound	CAS Number	Low	High	
EP231S: PFAS Surrogate				
13C4-PFOS		70	130	
13C8-PFOA		70	130	
Sub-Matrix: WATER		Recovery	Limits (%)	
Compound	CAS Number	Low	High	
EP231S: PFAS Surrogate				
		70	130	
13C4-PFOS				

QUALITY CONTROL REPORT

Work Order	: EB1919842	Page	: 1 of 12	
Client	: AECOM Australia Pty Ltd : CAMDEN McCOSKER	Laboratory	: Environmental Division I : Carsten Emrich	Brisbane
Contact Address	: CAMDEN MICCOSKER	Contact Address	: 2 Byth Street Stafford Q	LD Australia 4053
Telephone Project Order number	Brisbane : : 6060958_PR : 60609758 2.0	Telephone Date Samples Received Date Analysis Commenced	: +61 7 3552 8616 : 01-Aug-2019 : 01-Aug-2019	
C-O-C number Sampler	: 2657 : CAMDEN McCOSKER	Issue Date	: 08-Aug-2019	AC-MRA NATA
Site Quote number	: : BN/112/19			Accreditation No. 825
No. of samples received No. of samples analysed	: 43 : 19			Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Minh Wills	2IC Organic Chemist	Brisbane Organics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

ub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
A055: Moisture Co	ntent (Dried @ 105-110°C) (QC Lot: 2501986)							
EB1919838-035	Anonymous	EA055: Moisture Content		0.1	%	19.9	19.7	1.02	0% - 20%
EB1919842-013	PR_BH02_0.5 _190726	EA055: Moisture Content		0.1	%	16.3	15.9	2.39	0% - 20%
A055: Moisture Co	ntent (Dried @ 105-110°C) (QC Lot: 2501987)							
EB1919842-040	PR_QC101 _190726	EA055: Moisture Content		0.1	%	13.2	13.2	0.00	0% - 20%
P231A: Perfluoroal	Ikyl Sulfonic Acids (QC Lot	2501997)							
EB1919840-063	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	0.0003	0.0004	0.00	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	0.186	0.207	10.8	0% - 20%
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
B1919842-019	PR_BH02_5.0 _190726	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	0.0013	0.0015	14.8	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	0.0144	0.0151	5.40	0% - 20%
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
P231B: Perfluoroa	alkyl Carboxylic Acids (QC I	_ot: 2501997)							
B1919840-063	Anonymous	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	0.0004	0.0005	0.00	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	0.0003	0.0003	0.00	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	0.0003	0.0003	0.00	No Limit
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	0.0016	0.0017	6.91	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	0.0004	0.0004	0.00	No Limit

Page	: 3 of 12
Work Order	: EB1919842
Client	: AECOM Australia Pty Ltd
Project	: 6060958_PR

Sub-Matrix: SOIL									
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231B: Perfluoroa	alkyl Carboxylic Acids (QC	Lot: 2501997) - continued							
EB1919840-063	Anonymous	EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	<0.001	0.00	No Limit
EB1919842-019	PR_BH02_5.0 _190726	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	0.0004	0.0004	0.00	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	<0.001	0.00	No Limit
EP231C: Perfluoroal	Ikyl Sulfonamides (QC Lot	: 2501997)							
EB1919840-063	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	< 0.0002	< 0.0002	0.00	No Limit
	,	EP231X: N-Methyl perfluorooctane	2355-31-9	0.0002	mg/kg	< 0.0002	<0.0002	0.00	No Limit
		sulfonamidoacetic acid (MeFOSAA)							
		EP231X: N-Ethyl perfluorooctane	2991-50-6	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		sulfonamidoacetic acid (EtFOSAA)			0.0				
		EP231X: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		(MeFOSA)							
		EP231X: N-Ethyl perfluorooctane sulfonamide	4151-50-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		(EtFOSA)							
		EP231X: N-Methyl perfluorooctane	24448-09-7	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		sulfonamidoethanol (MeFOSE)							
		EP231X: N-Ethyl perfluorooctane	1691-99-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		sulfonamidoethanol (EtFOSE)							
EB1919842-019	PR_BH02_5.0 _190726	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: N-Methyl perfluorooctane	2355-31-9	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		sulfonamidoacetic acid (MeFOSAA)							
		EP231X: N-Ethyl perfluorooctane	2991-50-6	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		sulfonamidoacetic acid (EtFOSAA)							
		EP231X: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		(MeFOSA)	4454 50 0	0.0005		-0.0005	10,0005	0.00	Ne Limit
		EP231X: N-Ethyl perfluorooctane sulfonamide	4151-50-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		(EtFOSA)	24448-09-7	0.0005	malka	<0.0005	<0.0005	0.00	No Limit
		EP231X: N-Methyl perfluorooctane	∠4448-09-7	0.0005	mg/kg	<0.0005	<0.0005	0.00	
		sulfonamidoethanol (MeFOSE)							

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EP231C: Perfluoroa	Ikyl Sulfonamides (QC Lot	t: 2501997) - continued							
EB1919842-019	PR_BH02_5.0 _190726	EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
	rotelomer Sulfonic Acids(
			757404 70 4	0.0005		0.0005	0.0005		NI 11 11
EB1919840-063	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
EB1919842-019	PR_BH02_5.0_190726	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
ub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EP231A: Perfluoroa	Ikyl Sulfonic Acids (QC Lo					, i i i i i i i i i i i i i i i i i i i			
EB1919838-042	Anonymous	EP231X-LL: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.002	µg/L	<0.002	< 0.002	0.00	No Limit
		EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.002	μg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.002	µg/L	<0.002	<0.002	0.00	No Limit
EB1919842-038	PR_QC300_190726	EP231X-LL: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluoroheptane sulfonic acid	375-92-8	0.002	µg/L	<0.002	<0.002	0.00	No Limit

Page	5 of 12
Work Order	: EB1919842
Client	: AECOM Australia Pty Ltd
Project	: 6060958_PR

ub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
P231A: Perfluoroa		ot: 2501826) - continued							
EB1919842-038	PR_QC300_190726	EP231X-LL: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluorodecane sulfonic acid	335-77-3	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		(PFDS)							
P231B: Perfluoroa	Ikyl Carboxylic Acids (Q	C Lot: 2501826)							
EB1919838-042	Anonymous	EP231X-LL: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluorohexanoic acid (PFHxA)	307-24-4	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluorooctanoic acid (PFOA)	335-67-1	0.002	μg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluorononanoic acid (PFNA)	375-95-1	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluorodecanoic acid (PFDA)	335-76-2	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.005	µg/L	<0.005	<0.005	0.00	No Limit
		EP231X-LL: Perfluorobutanoic acid (PFBA)	375-22-4	0.01	µg/L	<0.01	<0.01	0.00	No Limit
B1919842-038	PR_QC300_190726	EP231X-LL: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluorohexanoic acid (PFHxA)	307-24-4	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluorooctanoic acid (PFOA)	335-67-1	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluorononanoic acid (PFNA)	375-95-1	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluorodecanoic acid (PFDA)	335-76-2	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.002	μg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.005	μg/L	<0.005	<0.005	0.00	No Limit
		EP231X-LL: Perfluorobutanoic acid (PFBA)	375-22-4	0.01	µg/L	<0.01	<0.01	0.00	No Limit
P231C: Perfluoroa	lkyl Sulfonamides (QC Lo			I					
B1919838-042	Anonymous	,	754-91-6	0.002	µg/L	<0.002	<0.002	0.00	No Limit
.D 10 10000-042	a a onymous	EP231X-LL: Perfluorooctane sulfonamide (FOSA)	2355-31-9	0.002	µg/L µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)			μg/L			0.00	
		EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.005	µg/L	<0.005	<0.005	0.00	No Limit
		EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.005	µg/L	<0.005	<0.005	0.00	No Limit

Page	: 6 of 12
Work Order	: EB1919842
Client	: AECOM Australia Pty Ltd
Project	: 6060958_PR

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231C: Perfluoroa	Ikyl Sulfonamides (QC Lo	ot: 2501826) - continued							
EB1919838-042	Anonymous	EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.005	µg/L	<0.005	<0.005	0.00	No Limit
		EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.005	µg/L	<0.005	<0.005	0.00	No Limit
EB1919842-038	PR_QC300_190726	EP231X-LL: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.005	µg/L	<0.005	<0.005	0.00	No Limit
		EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.005	µg/L	<0.005	<0.005	0.00	No Limit
		EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.005	µg/L	<0.005	<0.005	0.00	No Limit
		EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.005	µg/L	<0.005	<0.005	0.00	No Limit
EP231D: (n:2) Fluo	rotelomer Sulfonic Acids	(QC Lot: 2501826)							
EB1919838-042 Anonymous	EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.005	µg/L	<0.005	<0.005	0.00	No Limit	
		EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.005	μg/L	<0.005	<0.005	0.00	No Limit
		EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.005	µg/L	<0.005	<0.005	0.00	No Limit
		EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.005	µg/L	<0.005	<0.005	0.00	No Limit
EB1919842-038	PR_QC300_190726	EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.005	µg/L	<0.005	<0.005	0.00	No Limit
		EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.005	µg/L	<0.005	<0.005	0.00	No Limit
		EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.005	µg/L	<0.005	<0.005	0.00	No Limit
		EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.005	µg/L	<0.005	<0.005	0.00	No Limit
EP231P: PFAS Sum	s (QC Lot: 2501826)								
EB1919838-042	Anonymous	EP231X-LL: Sum of PFAS		0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Sum of PFHxS and PFOS	355-46-4/1763- 23-1	0.002	µg/L	<0.002	<0.002	0.00	No Limit
		EP231X-LL: Sum of PFAS (WA DER List)		0.002	µg/L	<0.002	<0.002	0.00	No Limit
EB1919842-038	PR_QC300_190726	EP231X-LL: Sum of PFAS		0.002	µg/L	<0.002	<0.002	0.00	No Limit

Page	: 7 of 12
Work Order	: EB1919842
Client	: AECOM Australia Pty Ltd
Project	: 6060958_PR

Sub-Matrix: WATER		Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231P: PFAS Sums	(QC Lot: 2501826) - contin								
EB1919842-038	PR_QC300_190726	EP231X-LL: Sum of PFHxS and PFOS	355-46-4/1763-	0.002	µg/L	<0.002	<0.002	0.00	No Limit
	23-1								
		EP231X-LL: Sum of PFAS (WA DER List)		0.002	µg/L	<0.002	<0.002	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report					
			Report	Spike	Spike Recovery (%)	Recovery Limits (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 2501997	7)								
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	0.0011 mg/kg	79.1	57	121	
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	0.00117 mg/kg	81.2	55	125	
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	0.00118 mg/kg	79.7	52	126	
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	0.00119 mg/kg	75.2	54	123	
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	<0.0002	0.00116 mg/kg	70.7	55	127	
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	0.0012 mg/kg	103	54	125	
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 2501	997)								
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	0.00625 mg/kg	59.4	52	128	
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	0.00125 mg/kg	80.4	54	129	
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	0.00125 mg/kg	79.6	58	127	
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	0.00125 mg/kg	76.4	57	128	
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	74.4	60	134	
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	72.0	63	130	
EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	0.00125 mg/kg	72.0	55	130	
EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	0.00125 mg/kg	71.2	62	130	
EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	69.2	53	134	
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	0.00125 mg/kg	72.0	49	129	
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	0.00312 mg/kg	68.4	59	129	
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2501997)								
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	0.00125 mg/kg	68.8	52	132	
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0005	0.00312 mg/kg	68.8	65	126	
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<0.0005	0.00312 mg/kg	93.8	64	126	
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.0005	mg/kg	<0.0005	0.00312 mg/kg	68.4	63	124	
EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<0.0005	0.00312 mg/kg	89.9	58	125	
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0002	mg/kg	<0.0002	0.00125 mg/kg	72.0	61	130	
P231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0002	mg/kg	<0.0002	0.00125 mg/kg	76.4	55	130	
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2	501997)								
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	0.00116 mg/kg	88.4	54	130	
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	0.00118 mg/kg	77.1	61	130	
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	0.00119 mg/kg	77.3	62	130	

Page	: 9 of 12
Work Order	: EB1919842
Client	: AECOM Australia Pty Ltd
Project	: 6060958_PR

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report					
			Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
P231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2	501997) - continued								
P231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	0.0012 mg/kg	102	60	130	
ub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 2501820	6)								
P231X-LL: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.002	µg/L	<0.002	0.0442 µg/L	91.2	50	130	
P231X-LL: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.002	µg/L	<0.002	0.0469 µg/L	79.7	50	130	
P231X-LL: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.002	µg/L	<0.002	0.0473 µg/L	82.9	50	130	
P231X-LL: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.002	µg/L	<0.002	0.0476 µg/L	82.1	50	130	
EP231X-LL: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.002	µg/L	<0.002	0.0464 µg/L	58.2	50	130	
EP231X-LL: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.002	µg/L	<0.002	0.0482 µg/L	61.8	40	130	
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 2501	826)								
P231X-LL: Perfluorobutanoic acid (PFBA)	375-22-4	0.01	µg/L	<0.01	0.25 μg/L	76.3	50	130	
EP231X-LL: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.002	µg/L	<0.002	0.05 µg/L	81.0	50	130	
P231X-LL: Perfluorohexanoic acid (PFHxA)	307-24-4	0.002	µg/L	<0.002	0.05 µg/L	87.0	50	130	
P231X-LL: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.002	µg/L	<0.002	0.05 µg/L	84.6	50	130	
P231X-LL: Perfluorooctanoic acid (PFOA)	335-67-1	0.002	µg/L	<0.002	0.05 µg/L	82.2	50	130	
P231X-LL: Perfluorononanoic acid (PFNA)	375-95-1	0.002	µg/L	<0.002	0.05 µg/L	74.6	50	130	
P231X-LL: Perfluorodecanoic acid (PFDA)	335-76-2	0.002	µg/L	<0.002	0.05 µg/L	70.0	50	130	
P231X-LL: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.002	µg/L	<0.002	0.05 µg/L	60.6	40	130	
P231X-LL: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.002	µg/L	<0.002	0.05 µg/L	60.6	40	130	
P231X-LL: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.002	µg/L	<0.002	0.05 µg/L	68.4	40	130	
P231X-LL: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.005	µg/L	<0.005	0.125 µg/L	74.6	40	130	
P231C: Perfluoroalkyl Sulfonamides (QCLot: 2501826)								
P231X-LL: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.002	µg/L	<0.002	0.05 µg/L	76.2	40	130	
P231X-LL: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.005	µg/L	<0.005	0.125 μg/L	68.6	40	130	
P231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.005	µg/L	<0.005	0.125 µg/L	61.5	40	130	
P231X-LL: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.005	µg/L	<0.005	0.125 μg/L	51.8	50	130	
P231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.005	µg/L	<0.005	0.125 μg/L	62.4	40	130	
P231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.002	µg/L	<0.002	0.05 µg/L	62.6	50	130	
P231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.002	µg/L	<0.002	0.05 µg/L	57.0	40	130	
P231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2	501826)								
EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.005	μg/L	<0.005	0.0467 µg/L	91.6	50	130	

Page	: 10 of 12
Work Order	: EB1919842
Client	: AECOM Australia Pty Ltd
Project	: 6060958_PR

Sub-Matrix: WATER	Method Blank (MB)	Laboratory Control Spike (LCS) Report						
				Report	Spike	Spike Recovery (%)	Recovery Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot:	2501826) - continue	ed						
EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.005	μg/L	<0.005	0.0474 µg/L	85.2	50	130
EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.005	μg/L	<0.005	0.0479 µg/L	72.2	50	130
EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.005	µg/L	<0.005	0.0482 µg/L	54.1	50	130
EP231P: PFAS Sums (QCLot: 2501826)								
EP231X-LL: Sum of PFAS		0.002	μg/L	<0.002				
EP231X-LL: Sum of PFHxS and PFOS	355-46-4/17	0.002	μg/L	<0.002				
	63-23-1							
EP231X-LL: Sum of PFAS (WA DER List)		0.002	μg/L	<0.002				

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL					Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery I	Limits (%)			
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EP231A: Perfluoro	alkyl Sulfonic Acids (QCLot: 2501997)									
EB1919840-060	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.00125 mg/kg	65.6	57	121			
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.00125 mg/kg	71.2	55	125			
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.00125 mg/kg	73.6	52	126			
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.00125 mg/kg	60.4	54	123			
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.00125 mg/kg	# Not Determined	55	127			
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.00125 mg/kg	64.8	54	125			
EP231B: Perfluoro	oalkyl Carboxylic Acids (QCLot: 2501997)									
EB1919840-060	Anonymous	EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.00625 mg/kg	57.9	52	128			
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.00125 mg/kg	81.2	54	129			
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.00125 mg/kg	79.6	58	127			
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.00125 mg/kg	84.8	57	128			
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.00125 mg/kg	73.2	60	134			
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.00125 mg/kg	66.0	63	130			
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.00125 mg/kg	72.0	55	130			
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.00125 mg/kg	64.4	62	130			
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.00125 mg/kg	56.8	53	134			
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.00125 mg/kg	53.2	49	129			
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.00312 mg/kg	# 51.9	59	129			
EP231C: Perfluoro	alkyl Sulfonamides (QCLot: 2501997)									
EB1919840-060	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.00125 mg/kg	70.8	52	132			

Sub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP231C: Perfluoro	alkyl Sulfonamides (QCLot: 2501997) - continued						
EB1919840-060	Anonymous	EP231X: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.00312 mg/kg	79.3	65	126
		(MeFOSA)					
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.00312 mg/kg	80.0	64	126
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol	24448-09-7	0.00312 mg/kg	# 50.8	63	124
		(MeFOSE)					
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol	1691-99-2	0.00312 mg/kg	65.7	58	125
		(EtFOSE)					
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic	2355-31-9	0.00125 mg/kg	74.0	61	130
		acid (MeFOSAA)					
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic	2991-50-6	0.00125 mg/kg	63.2	55	130
		acid (EtFOSAA)					
EP231D: (n:2) Flu	orotelomer Sulfonic Acids (QCLot: 2501997)						
EB1919840-060 Anonymous	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.00125 mg/kg	72.8	54	130
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.00125 mg/kg	69.2	61	130
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.00125 mg/kg	77.2	62	130
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.00125 mg/kg	86.4	60	130
ub-Matrix: WATER				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	Hig
EP231A: Perfluoro	alkyl Sulfonic Acids (QCLot: 2501826)						
EB1919838-043	Anonymous	EP231X-LL: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.05 µg/L	73.8	50	130
	, alonymous	EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.05 µg/L	73.0	50	130
		EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.05 µg/L	76.4	50	130
		EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.05 µg/L	75.0	50	130
		EP231X-LL: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.05 µg/L	68.6	50	130
		EP231X-LL: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.05 µg/L	57.6	40	130
ED224D, Dorfluor	oalkyl Carboxylic Acids (QCLot: 2501826)			10	1		
			075 00 4	0.05.45%	74.0	50	400
EB1919838-043	Anonymous	EP231X-LL: Perfluorobutanoic acid (PFBA)	375-22-4	0.25 µg/L	71.8	50	130
		EP231X-LL: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.05 µg/L	75.4	50	130
		EP231X-LL: Perfluorohexanoic acid (PFHxA)	307-24-4	0.05 µg/L	81.6	50	130
		EP231X-LL: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.05 µg/L	79.8	50	130
		EP231X-LL: Perfluorooctanoic acid (PFOA)	335-67-1	0.05 µg/L	78.2	50	130
		EP231X-LL: Perfluorononanoic acid (PFNA)	375-95-1	0.05 µg/L	71.0	50	130
		EP231X-LL: Perfluorodecanoic acid (PFDA)	335-76-2	0.05 µg/L	66.4	50	130
		EP231X-LL: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.05 µg/L	53.6	40	130
		EP231X-LL: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.05 µg/L	55.0	40	130
		EP231X-LL: Perfluorotridecanoic acid (PFTrDA)	72629-94-8 376-06-7	0.05 μg/L 0.125 μg/L	74.8 61.8	40	130 130
		EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)	276 06 7	1 () 105 u/d			

Page	: 12 of 12
Work Order	: EB1919842
Client	: AECOM Australia Pty Ltd
Project	: 6060958_PR

Sub-Matrix: WATER				М	atrix Spike (MS) Report		
		Spike	SpikeRecovery(%)	Recovery I	.imits (%)		
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP231C: Perfluoro	alkyl Sulfonamides (QCLot: 2501826)						
EB1919838-043	Anonymous	EP231X-LL: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.05 µg/L	63.6	40	130
		EP231X-LL: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.125 µg/L	59.9	40	130
		EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.125 µg/L	52.2	40	130
		EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.125 µg/L	51.0	50	130
		EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.125 µg/L	57.1	40	130
		EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.05 µg/L	52.8	50	130
		EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.05 µg/L	51.0	40	130
EP231D: (n:2) Flue	orotelomer Sulfonic Acids (QCLot: 2501826)						
EB1919838-043	Anonymous	EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05 µg/L	81.4	50	130
		EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05 µg/L	78.0	50	130
		EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05 µg/L	69.0	50	130
		EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05 µg/L	52.4	50	130

QA/QC Compliance Assessment to assist with Quality Review							
Work Order	: EB1919842	Page	: 1 of 7				
Client	: AECOM Australia Pty Ltd	Laboratory	: Environmental Division Brisbane				
Contact	: CAMDEN McCOSKER	Telephone	: +61 7 3552 8616				
Project	: 6060958_PR	Date Samples Received	: 01-Aug-2019				
Site	:	Issue Date	: 08-Aug-2019				
Sampler	: CAMDEN McCOSKER	No. of samples received	: 43				
Order number	: 60609758 2.0	No. of samples analysed	: 19				

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EP231A: Perfluoroalkyl Sulfonic Acids	EB1919840060	Anonymous	Perfluorooctane	1763-23-1	Not		MS recovery not determined,
			sulfonic acid (PFOS)		Determined		background level greater than or
							equal to 4x spike level.
EP231B: Perfluoroalkyl Carboxylic Acids	EB1919840060	Anonymous	Perfluorotetradecanoic	376-06-7	51.9 %	59-129%	Recovery less than lower data quality
			acid (PFTeDA)				objective
EP231C: Perfluoroalkyl Sulfonamides	EB1919840060	Anonymous	N-Methyl	24448-09-7	50.8 %	63-124%	Recovery less than lower data quality
			perfluorooctane				objective
			sulfonamidoethanol				
			(MeFOSE)				

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: * = Holding time breach ; \checkmark = Within holding time.

				Evaluation	. Thoraing anno		in noraling an
Method		Date Extraction / Preparation					
		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
2 C)							
PR_BH04_1.0 _190726,	26-Jul-2019				01-Aug-2019	09-Aug-2019	✓
PR_SS1_0.1 _190726,							
PR_BH02_0.5 _190726,							
PR_BH02_5.0 _190726,							
PR_QC101_190726							
PR_BH01_1.0 _190727,	27-Jul-2019				01-Aug-2019	10-Aug-2019	✓
PR_BH03_0.5 _190727,							
PR_BH03_5.0 _190727							
	PR_SS1_0.1_190726, PR_BH02_0.5_190726, PR_BH02_5.0_190726, PR_QC101_190726 PR_BH01_1.0_190727, PR_BH03_0.5_190727,	PR_BH04_1.0_190726, 26-Jul-2019 PR_SS1_0.1_190726, PR_BH02_0.5_190726, PR_BH02_5.0_190726, PR_QC101_190726 PR_BH01_1.0_190727, 27-Jul-2019 PR_BH03_0.5_190727, 27-Jul-2019	Date extracted PR_BH04_1.0_190726, PR_SS1_0.1_190726, PR_BH02_0.5_190726, PR_BH02_5.0_190726, PR_QC101_190726 26-Jul-2019 PR_BH02_1.0_190726, PR_QC101_190726 27-Jul-2019 PR_BH01_1.0_190727, PR_BH03_0.5_190727, 27-Jul-2019	Date extracted Due for extraction PR_BH04_1.0_190726, PR_SS1_0.1_190726, PR_BH02_0.5_190726, PR_BH02_5.0_190726, PR_QC101_190726 26-Jul-2019 PR_BH02_5.0_190726, PR_QC101_190726 PR_BH01_1.0_190727, PR_BH03_0.5_190727, 27-Jul-2019	Sample Date Extraction / Preparation Date extracted Due for extraction Evaluation C) PR_BH04_1.0_190726, PR_SS1_0.1_190726, PR_BH02_0.5_190726, PR_BH02_5.0_190726, PR_QC101_190726 26-Jul-2019 PR_BH02_5.0_190726, PR_QC101_190726 PR_BH02_5.0_190726, PR_BH03_0.5_190727, 27-Jul-2019	Sample Date Extraction / Preparation Evaluation Date analysed C) Date extracted Due for extraction Evaluation Date analysed PR_BH04_1.0_190726, PR_SS1_0.1_190726, PR_BH02_0.5_190726, PR_BH02_5.0_190726, PR_BH02_5.0_190726, PR_QC101_190726 26-Jul-2019 01-Aug-2019 PR_BH02_5.0_190726, PR_BH02_5.0_190726, PR_BH02_5.0_190727, PR_BH03_0.5_190727, 27-Jul-2019 01-Aug-2019	Date extracted Due for extraction Evaluation Date analysed Due for analysis PR_BH04_1.0_190726, PR_SS1_0.1_190726, PR_BH02_0.5_190726, PR_BH02_5.0_190726, PR_QC101_190726 26-Jul-2019 01-Aug-2019 09-Aug-2019 PR_BH02_0.5_190726, PR_BH02_5.0_190726, PR_QC101_190726 27-Jul-2019 01-Aug-2019 09-Aug-2019 PR_BH01_1.0_190727, PR_BH03_0.5_190727, 27-Jul-2019 01-Aug-2019 10-Aug-2019

Page	: 3 of 7
Work Order	: EB1919842
Client	: AECOM Australia Pty Ltd
Project	: 6060958_PR

Matrix: SOIL					Evaluatior	n: × = Holding time	breach ; 🗸 = With	in holding tim
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231A: Perfluoroalkyl Sulfonic Acids								
HDPE Soil Jar (EP231X)								
PR_BH04_0.5 _190726,	PR_BH04_1.0 _190726,	26-Jul-2019	03-Aug-2019	22-Jan-2020	~	05-Aug-2019	12-Sep-2019	 ✓
PR_BH04_5.0 _190726,	PR_SS1_0.1_190726,							
PR_SS1_0.5 _190726,	PR_BH02_0.5 _190726,							
PR_BH02_1.0 _190726,	PR_BH02_5.0 _190726,							
PR_QC100 _190726,	PR_QC101 _190726							
HDPE Soil Jar (EP231X)								
PR_BH01_0.25 _190727,	PR_BH01_1.0 _190727,	27-Jul-2019	03-Aug-2019	23-Jan-2020	1	05-Aug-2019	12-Sep-2019	 ✓
PR_BH01_5.0 _190727,	PR_BH03_0.5 _190727,							
PR_BH03_1.0 _190727,	PR_BH03_5.0 _190727							
EP231B: Perfluoroalkyl Carboxylic Acids								
HDPE Soil Jar (EP231X)								
PR_BH04_0.5 _190726,	PR_BH04_1.0 _190726,	26-Jul-2019	03-Aug-2019	22-Jan-2020	1	05-Aug-2019	12-Sep-2019	 ✓
PR_BH04_5.0 _190726,	PR_SS1_0.1_190726,							
PR_SS1_0.5 _190726,	PR_BH02_0.5 _190726,							
PR_BH02_1.0 _190726,	PR_BH02_5.0 _190726,							
PR_QC100 _190726,	PR_QC101_190726							
HDPE Soil Jar (EP231X)								
PR_BH01_0.25 _190727,	PR_BH01_1.0 _190727,	27-Jul-2019	03-Aug-2019	23-Jan-2020	1	05-Aug-2019	12-Sep-2019	 ✓
PR_BH01_5.0 _190727,	PR_BH03_0.5 _190727,							
PR_BH03_1.0 _190727,	PR_BH03_5.0 _190727							
EP231C: Perfluoroalkyl Sulfonamides								
HDPE Soil Jar (EP231X)								
PR_BH04_0.5 _190726,	PR_BH04_1.0 _190726,	26-Jul-2019	03-Aug-2019	22-Jan-2020	1	05-Aug-2019	12-Sep-2019	 ✓
PR_BH04_5.0 _190726,	PR_SS1_0.1_190726,							
PR_SS1_0.5 _190726,	PR_BH02_0.5 _190726,							
PR_BH02_1.0_190726,	PR_BH02_5.0 _190726,							
PR_QC100 _190726,	PR_QC101_190726							
HDPE Soil Jar (EP231X)								
PR_BH01_0.25 _190727,	PR_BH01_1.0 _190727,	27-Jul-2019	03-Aug-2019	23-Jan-2020	1	05-Aug-2019	12-Sep-2019	✓
PR_BH01_5.0 _190727,	PR_BH03_0.5 _190727,							
PR_BH03_1.0 _190727,	PR_BH03_5.0 _190727							

Page	: 4 of 7
Work Order	: EB1919842
Client	: AECOM Australia Pty Ltd
Project	: 6060958_PR

HDPE (no PTFE) (EP231X-LL) PR_QC302_190727

 \checkmark

23-Jan-2020

Matrix: SOIL		Sample Date	E	traction / Preparation			e breach ; ✓ = Withi Analysis	
Container / Client Sample ID(s)		Sample Date	Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231D: (n:2) Fluorotelomer Sulfonic Acids			Bute extraored		27414440011	Dute unulyoed	Due for analysis	Liadao
HDPE Soil Jar (EP231X)						1		
PR_BH04_0.5_190726,	PR BH04 1.0 190726,	26-Jul-2019	03-Aug-2019	22-Jan-2020	1	05-Aug-2019	12-Sep-2019	1
PR BH04 5.0 190726,	PR SS1 0.1 190726,		-		-			•
PR_SS1_0.5_190726,	PR_BH02_0.5_190726,							
PR_BH02_1.0 _190726,	PR_BH02_5.0 _190726,							
PR QC100 190726,	PR QC101 190726							
HDPE Soil Jar (EP231X)								
PR_BH01_0.25 _190727,	PR BH01 1.0 190727,	27-Jul-2019	03-Aug-2019	23-Jan-2020	1	05-Aug-2019	12-Sep-2019	1
PR_BH01_5.0 _190727,	PR_BH03_0.5_190727,		_		_	_		· ·
PR_BH03_1.0 _190727,	PR_BH03_5.0 _190727							
EP231P: PFAS Sums								
HDPE Soil Jar (EP231X)								
PR_BH04_0.5_190726,	PR_BH04_1.0 _190726,	26-Jul-2019	03-Aug-2019	22-Jan-2020	1	05-Aug-2019	12-Sep-2019	 ✓
PR_BH04_5.0 _190726,	PR SS1 0.1 190726,							
PR SS1 0.5 190726,	PR BH02 0.5 190726,							
PR BH02 1.0 190726,	PR BH02 5.0 190726,							
PR_QC100 _190726,	PR_QC101 _190726							
HDPE Soil Jar (EP231X)								
PR_BH01_0.25_190727,	PR_BH01_1.0 _190727,	27-Jul-2019	03-Aug-2019	23-Jan-2020	1	05-Aug-2019	12-Sep-2019	✓
PR BH01 5.0 190727,	PR BH03 0.5 190727,							
PR_BH03_1.0_190727,	PR_BH03_5.0_190727							
Matrix: WATER			1	1	Evaluation	.: × = Holding time	breach ; ✓ = Withi	n holding tir
Method		Sample Date	E>	traction / Preparation	Liadador	Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231A: Perfluoroalkyl Sulfonic Acids							-	
HDPE (no PTFE) (EP231X-LL)								
PR_QC300_190726,	PR_QC301 _190726	26-Jul-2019	01-Aug-2019	22-Jan-2020	1	01-Aug-2019	22-Jan-2020	 ✓
HDPE (no PTFE) (EP231X-LL)								
PR_QC302_190727		27-Jul-2019	01-Aug-2019	23-Jan-2020	1	01-Aug-2019	23-Jan-2020	✓
EP231B: Perfluoroalkyl Carboxylic Acids								
HDPE (no PTFE) (EP231X-LL)								
PR_QC300_190726,	PR_QC301_190726	26-Jul-2019	01-Aug-2019	22-Jan-2020	✓	01-Aug-2019	22-Jan-2020	✓
HDPE (no PTFE) (EP231X-LL)		07 1 1 00 10		00.1 0000			00.1 0000	
PR_QC302_190727		27-Jul-2019	01-Aug-2019	23-Jan-2020	~	01-Aug-2019	23-Jan-2020	✓
EP231C: Perfluoroalkyl Sulfonamides								
HDPE (no PTFE) (EP231X-LL)							00.1.0005	
PR_QC300_190726,	PR_QC301_190726	26-Jul-2019	01-Aug-2019	22-Jan-2020		01-Aug-2019	22-Jan-2020	✓
UDDE (no DTEE) (ED221V II)			1			1		

27-Jul-2019

01-Aug-2019

23-Jan-2020

 \checkmark

01-Aug-2019

Page	: 5 of 7
Work Order	: EB1919842
Client	: AECOM Australia Pty Ltd
Project	: 6060958_PR

Matrix: WATER					Evaluation	: × = Holding time	breach ; 🗸 = With	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231D: (n:2) Fluorotelomer Sulfonic Acids	;							
HDPE (no PTFE) (EP231X-LL) PR_QC300_190726,	PR_QC301_190726	26-Jul-2019	01-Aug-2019	22-Jan-2020	~	01-Aug-2019	22-Jan-2020	1
HDPE (no PTFE) (EP231X-LL) PR_QC302_190727		27-Jul-2019	01-Aug-2019	23-Jan-2020	1	01-Aug-2019	23-Jan-2020	1
EP231P: PFAS Sums								
HDPE (no PTFE) (EP231X-LL) PR_QC300_190726,	PR_QC301_190726	26-Jul-2019	01-Aug-2019	22-Jan-2020	~	01-Aug-2019	22-Jan-2020	1
HDPE (no PTFE) (EP231X-LL) PR_QC302_190727		27-Jul-2019	01-Aug-2019	23-Jan-2020	1	01-Aug-2019	23-Jan-2020	~

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

			Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
	С	ount		Rate (%)		Quality Control Specification
Method	QC	Reaular	Actual	Expected	Evaluation	
EA055	3	21	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
EP231X	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
EP231X	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
EP231X	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
EP231X	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
			Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
	С	ount		Rate (%)		Quality Control Specification
Method	QC	Reaular	Actual	Expected	Evaluation	
EP231X-LL	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
EP231X-LL	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
EP231X-LL	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
EP231X-LL	1	14	7.14	5.00	~	NEPM 2013 B3 & ALS QC Standard
	EA055 EP231X EP231X EP231X EP231X EP231X Method EP231X-LL EP231X-LL EP231X-LL	Method QC EA055 3 EP231X 2 EP231X 1 EP231X-LL 2 EP231X-LL 1 EP231X-LL 1 EP231X-LL 1	EA055 3 21 EP231X 2 19 EP231X 1 14 EP231X-LL 1 14 EP231X-LL 1 14	Method Count Actual EA055 3 21 14.29 EP231X 2 19 10.53 EP231X 2 19 10.53 EP231X 1 19 5.26 EValuation Count Evaluation EP231X-LL 2 14 14.29 EP231X-LL 1 14 7.14 EP231X-LL 1 14 7.14	Count Rate (%) Method QC Reaular Actual Expected EA055 3 21 14.29 10.00 EP231X 2 19 10.53 10.00 EP231X 1 19 5.26 5.00 Evaluation: * = Quality Context Rate (%) Rate (%) Method QC Reaular Actual Expected EP231X-LL 2 14 14.29 10.00 EP231X-LL 1 14 7.14 5.00 EP231X-LL 1 14 7.14 5.00	Count Rate (%) Method OC Reaular Actual Expected Evaluation EA055 3 21 14.29 10.00 ✓ EP231X 2 19 10.53 10.00 ✓ EP231X 2 19 10.53 10.00 ✓ EP231X 1 19 5.26 5.00 ✓ Evaluation: × = Quality Control frequency is revealuation: × = Quality Control frequency is revealuation Rate (%) Evaluation EP231X-LL 2 14 14.29 10.00 ✓ EP231X-LL 1 14 7.14 5.00 ✓

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	SOIL	In-House. A portion of soil is extracted with MTBE. The extract is taken to dryness, made up in mobile phase. Analysis is by LC/MSMS, ESI Negative Mode using MRM. Where commercially available, isotopically labelled analogues of the target analytes are used as internal standards for quantification. Where a labelled analogue is not commercially available, the internal standard with similar chemistry and the closest retention time to the target is used for quantification. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. This method complies with the quality control definitions as stated in QSM 5.1. Data is reviewed in line with the DQOs as stated in QSM5.1
Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS	EP231X-LL	WATER	In-house: Analysis of fresh and saline waters by solid phase extraction followed by LC-Electrospray-MS-MS, Negative Mode using MRM. Where commercially available, isotopically labelled analogues of the target analytes are used as internal standards for quantification. Where a labelled analogue is not commercially available, the internal standard with similar chemistry and the closest retention time to the target is used for quantification. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. This method complies with the quality control definitions as stated in QSM 5.1. Data is reviewed in line with the DQOs as stated in QSM5.1
Preparation Methods	Method	Matrix	Method Descriptions
Sample Extraction for PFAS	EP231-PR	SOIL	In house
SPE preparation for LL and saline PFCs	EP231-SPE	WATER	In house

Enu	CHAIN OF CUSTODY ALS Laboratory please tick -	Ph: 08 8359 OBRISBANE Ph: 07 3243 OBRIADSTO Ph: 07 7471	0890 E: ad 32 Shand 7222 E: sa NE 46 Calle	mples.brisbane@alsglobal.com Ph: 03 8549 9600 E emondah Drive Clinton QLD 4680 QMUDGEE 27 Sydr	mackay@alsglobal.co 4 Westall Road Sprin : samples.melbourne	om gvale VIC 3171 @alsglobal.com SW 2850	Ph: 02 4014 DNOWR Ph: 0244 DPERT	"LE 5/585 Maitland 2500 E: samples.n A 4/13 Geary Place 23 2063 E: nowra@ H 10 Hod Way Mai 209 7655 E: samp	ewcastle@alsglo North Nowra NS alsglobal.com	st NSW 2304 bal.com WW 2541	DSYDNEY Ph: 02 8784 DTOWNSV Ph: 07 4796 DWOLLON	277-289 Woodpark Road Smithfield NSW 2164 8555 E: samples.sydney@alsglobal.com NLLE 14-15 Desma Court Bohle QLD 9818 0600 E: townselle.amviornmental@alsglobal.com GONG 99 Kenny Street Wollongong NSW 2500 3125 E: portkembla@alsglobal.com
	AECOM Pty Ltd				Standard TAT (L	ist due date):	5 Day			FOR LABOR	Call States and and the	ONLY (Circle)
	Brisbane		Ultra Tr		Non Standard or	urgent TAT (Lis	st due date):			Custody Seal In		Yes No
	1: 60609758 2.0 IUMBER:		ALS	QUOTE NO.: BN/112/19)		coc s	EQUENCE NUN	IBER (Circle) Free ice / frozer receipt?	lice bricks pres	sent upon Yes No
	MANAGER: James Peachev	CONTACT	0426	206 262			COC: (1)	2 3 4	56	7 Random Sample	e Temperature	on Receipt: "C
	R: Camden McCosker				QUISHED BY:				5 6			Man Internet
C ema	iled to ALS? (YES / NO)	EDD FORM					RECEIVED	51:		RELINQUISHED BY	· JUII	RECEIVED BY:
all Rep	orts to (will default to PM if no other address			DATE			DATE/TIME:			DATE/TIME:	1/8/1	DATE/TIME:
nail Inve	Dice to (will default to PM if no other addresse	es are listed):		3	1/7/19	094				Critica range.	/ /	
MMEN	TS/SPECIAL HANDLING/STORAGE OR DIS	POSAL: Plecs	e 4	crund to Nm1	ith	110	111			L		
ALS	SAMPLE DET MATRIX: SOLID (S)	TAILS		CONTAINER INFORMATIO	DN .	ANALY: Where Me	SIS REQUIRED Inclu etals are required, spe	cify Total (unfilt	B. Suite Codes ered bottle required).	must be listed to attract uired) or Dissolved (field	suite price) filtered bottle	Additional Information
AB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refe codes below)	ot of TOTAL CONTAINERS	EP231X (PFAS 28)	EP231X-ST (PFAS 28 super trace)	EP231X-LL (low level)			ПОН	Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
	PT_ a 200-190726	26/7/19	5	1 <i>P</i>	1	-			N	19/019413		Formand town
	PR-acros-190726	11	11	(1	1	1	A pr	202190		19/019414		11
	PR-GC 202-19072	27/7/19	11	11	1		ge	A		9/019415		1/
	PT- QC 203- 190727		11	(\	1				_	9/019416	K	,1
1	. / /			1						1		~
/			/)			/)
/			/		Sur Sur		/			//		
		/									-	
					-	-/		_	/-		_	
	· /				0	100	57777G	D			-	
						604	911 U 129		(/	1
					11	02A	UG 2019	U			/	
		and the second se	and the second sec					1				
							10-10	11		1	1	1

Australian Government Department of Industry, Innovation and Science

National Measurement Institute

SAMPLE RECEIPT NOTIFICATION

CUSTOMER DETAILS

LABORATORY DETAILS

Attention:	JAMES PEACHEY	Lab:	National Measurement Institute
Customer:	AECOM AUSTRALIA PTY LTD	Contact:	Susanne Neuman
Address:	LEVEL 8 FORTITUDE VALLEY QLD 4006	Address:	105 Delhi Road, North Ryde, NSW NSW 2113
Email:	james.peachey@aecom.com	Email:	Susanne.Neuman@measurement.gov.au
Telephone		Telephone:	02 9449 0181
Fax:		Fax:	

SAMPLE DETAILS

NMI Job Name:	AEC006/190802/1						
Total No. of Samples: 4							
LRNs	Customer Sample ID	Lab Sample Description					
N19/019413	PR_QC200_190726	SOIL 26/07/2019					
N19/019414	PR_QC201_190726	SOIL 26/07/2019					
N19/019415	PR_QC202_190727	SOIL 27/07/2019					
N19/019416	PR_QC203_190727	SOIL 27/07/2019					

105 Delhi Road, North Ryde, NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

SAMPLE RECEIVED CONDITION

Date samples received:	2-AUG-2019
Sample received in good order:	Yes
NMI Quotation no. provided:	
Client purchase order number:	60609758_2_0
Temperature of samples:	Chilled
Comments:	SAMPLE QC201_190726 WAS QC202_190726 ON THE JAR, HOWEVER T ON HOLD.
Estimated report date:	9-AUG-2019
Mode of Delivery:	Courier

Additional Terms and Conditions

Incomplete / unclear information about samples or required testing will delay the start of the analysis work

If you require your Purchase Order (PO) number to be included on our invoice, please provide the number during sample submission and before the completion of work to avoid unnecessary delays and/or additional processing/handling fees.

The lodgement of an order or receipt of samples for NMI services referenced in this Sample Receipt Notification constitutes an acceptence of the current version of NMI Terms and Conditions or other applicable Terms referenced in the NMI Quotation. NMI Terms and Conditions are available on the web at

http://www.measurement.gov.au/Services/EnvironmentalTesting/Pages/Terms-and-Conditions.aspx

Australian Government

Department of Industry, Innovation and Science

National Measurement Institute

Page: 1 of 4

REPORT OF ANALYSIS

					5
					Report No. RN1242617
Client :	AECOM AUSTRALIA PTY LTD		Job No.	:	AECO06/190802/1
	LEVEL 8		Quote No.	:	QT-02018
	540 WICKHAM STREET		Order No.	:	60609758_2_0
			Date Received	:	02-AUG-2019
Attention :	JAMES PEACHEY		Sampled By	:	CLIENT
Project Name :	60609758_2_0				
Your Client Serv	vices Manager : Richard Coghlan		Phone	:	02 9449 0161
Lab Reg No.	Sample Ref	Sample Description			
	•				
N19/019413	PR_QC200_190726	SOIL 26/07/2019			
N19/019414	PR_QC201_190726	SOIL 26/07/2019			

Lab Reg No.		N19/019413	N19/019414	
Date Sampled		26-JUL-2019	26-JUL-2019	
	Units			Method
PFAS (per-and poly-fluoroalk	yl substances)			
PFBA (375-22-4)	mg/kg	< 0.002	< 0.002	NR70
PFPeA (2706-90-3)	mg/kg	< 0.002	< 0.002	NR70
PFHxA (307-24-4)	mg/kg	< 0.001	0.0012	NR70
PFHpA (375-85-9)	mg/kg	< 0.001	< 0.001	NR70
PFOA (335-67-1)	mg/kg	< 0.001	< 0.001	NR70
PFNA (375-95-1)	mg/kg	< 0.001	0.0012	NR70
PFDA (335-76-2)	mg/kg	< 0.001	< 0.001	NR70
PFUdA (2058-94-8)	mg/kg	< 0.002	< 0.002	NR70
PFDoA (307-55-1)	mg/kg	< 0.002	< 0.002	NR70
PFTrDA (72629-94-8)	mg/kg	< 0.002	< 0.002	NR70
PFTeDA (376-06-7)	mg/kg	< 0.002	< 0.002	NR70
PFHxDA (67905-19-5)	mg/kg	< 0.002	< 0.002	NR70
PFODA (16517-11-6)	mg/kg	< 0.005	< 0.005	NR70
FOUEA (70887-84-2)	mg/kg	< 0.001	< 0.001	NR70
PFBS (375-73-5)	mg/kg	< 0.001	0.0014	NR70
PFPeS (2706-91-4)	mg/kg	< 0.001	0.0013	NR70
PFHxS (355-46-4)	mg/kg	0.0015	0.016	NR70
PFHpS (375-92-8)	mg/kg	< 0.001	< 0.001	NR70
PFOS (1763-23-1)	mg/kg	0.0029	0.015	NR70
PFNS (68259-12-1)	mg/kg	< 0.001	< 0.001	NR70
PFDS (335-77-3)	mg/kg	< 0.001	< 0.001	NR70
PFOSA (754-91-6)	mg/kg	< 0.001	< 0.001	NR70
N-MeFOSA (31506-32-8)	mg/kg	< 0.002	< 0.002	NR70
N-EtFOSA (4151-50-2)	mg/kg	< 0.002	< 0.002	NR70
N-MeFOSAA (2355-31-9)	mg/kg	< 0.002	< 0.002	NR70
N-EtFOSAA(2991-50-6)	mg/kg	< 0.002	< 0.002	NR70
N-MeFOSE (24448-09-7)	mg/kg	< 0.005	< 0.005	NR70
N-EtFOSE (1691-99-2)	mg/kg	< 0.005	< 0.005	NR70

Accredited for compliance with ISO/IEC 17025 - Testing 105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

REPORT OF ANALYSIS

Page: 2 of 4 Report No. RN1242617

Lab Reg No.		N19/019413	N19/019414		
Date Sampled		26-JUL-2019	26-JUL-2019		
	Units				Method
PFAS (per-and poly-fluoroalkyl s	ubstances)				
4:2 FTS (757124-72-4)	mg/kg	< 0.001	<0.001		NR70
6:2 FTS (27619-97-2)	mg/kg	< 0.001	<0.001		NR70
8:2 FTS (39108-34-4)	mg/kg	< 0.001	<0.001		NR70
10:2 FTS (120226-60-0)	mg/kg	< 0.002	< 0.002		NR70
8:2 diPAP (678-41-1)	mg/kg	< 0.002	< 0.002		NR70
PFBA (Surrogate Recovery)	%	128	126		NR70
PFPeA (Surrogate Recovery)	%	142	134		NR70
PFHxA (Surrogate Recovery)	%	133	131		NR70
PFHpA (Surrogate Recovery)	%	140	133		NR70
PFOA (Surrogate Recovery)	%	150	133		NR70
PFNA (Surrogate Recovery)	%	128	119		NR70
PFDA (Surrogate Recovery)	%	124	126		NR70
PFUdA (Surrogate Recovery)	%	146	114		NR70
PFDoA (Surrogate Recovery)	%	126	128		NR70
PFTeDA (Surrogate Recovery)	%	133	121		NR70
PFHxDA (Surrogate Recovery)	%	184	176		NR70
FOUEA (Surrogate Recovery)	%	86	81		NR70
PFBS (Surrogate Recovery)	%	140	128		NR70
PFHxS (Surrogate Recovery)	%	136	124		NR70
PFOS (Surrogate Recovery)	%	133	128		NR70
PFOSA (Surrogate Recovery)	%	127	107		NR70
N-MeFOSA (Surrogate Recovery)%	151	132		NR70
N-EtFOSA (Surrogate Recovery)	%	130	122		NR70
N-MeFOSAA (Surrogate Recove	r\$⁄}	101	118		NR70
N-EtFOSAA (Surrogate Recovery	1%	133	106		NR70
N-MeFOSE (Surrogate Recovery	%	114	117		NR70
N-EtFOSE (Surrogate Recovery)	%	122	177		NR70
4:2 FTS (Surrogate Recovery)	%	123	106		NR70
6:2 FTS (Surrogate Recovery)	%	112	99		NR70
8:2 FTS (Surrogate Recovery)	%	109	91		NR70
8:2 diPAP (Surrogate Recovery)	%	62	48		NR70
Dates		•		1	
Date extracted		6-AUG-2019	6-AUG-2019		
Date analysed		12-AUG-2019	12-AUG-2019		

N19/019413 To N19/019414

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

National Measurement Institute

REPORT OF ANALYSIS

Page: 3 of 4 Report No. RN1242617

PFOS is quantified using a combined branched and linear standard, linear and branched isomers are totalled for reporting. All results corrected for labelled surrogate recoveries. Selected PFAS surrogate recoveries are biased due to matrix effects.

C

Danny Slee, Section Manager Organic - NSW Accreditation No. 198

13-AUG-2019

Lab Reg No.		N19/019413	N19/019414	
Date Sampled		26-JUL-2019	26-JUL-2019	
	Units			Method
Trace Elements				
Total Solids	%	77.1	86.8	NT2_49

Pankaj Barai, Analyst

Inorganics - NSW Accreditation No. 198

13-AUG-2019

All results are expressed on a dry weight basis.

Accredited for compliance with ISO/IEC 17025 - Testing. This report shall not be reproduced except in full. Results relate only to the sample(s) tested.

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

National Measurement Institute

REPORT OF ANALYSIS

Page: 4 of 4 Report No. RN1242617

This Report supersedes reports: RN1242285 RN1242607

Measurement Uncertainty is available upon request. Chemical Accreditation 198: 105 Delhi Road, North Ryde, NSW, 2113

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Australian Government

National Measurement Institute

QUALITY ASSURANCE REPORT

Client:

AECOM AUSTRALIA PTY LTD

NMI QA Report No:

AECO06/190802/1

Sample Matrix: Solid

Method LOR Blank Analyte Sample Duplicates Recoveries RPD Sample Duplicate LCS Matrix Spike mg/kg mg/kg mg/kg mg/kg % % % PFBA (375-22-4) NR70 0.002 < 0.002 NA NA NA 114 NA NA PFPeA (2706-90-3) NR70 0.002 < 0.002 NA NA NA 103 PFHxA (307-24-4) **NR70** 0.001 < 0.001 NA NA NA 108 NA **NR70** < 0.001 NA 104 PFHpA (375-85-9) 0.001 NA NA NA PFOA (335-67-1) **NR70** 0.001 < 0.001 NA NA NA 103 NA PFNA (375-95-1) NR70 0.001 < 0.001 NA NA NA NA 115 PFDA (335-76-2) **NR70** 0.001 < 0.001 NA NA NA 108 NA PFUdA (2058-94-8) NR70 0.002 < 0.002 NA NA NA 108 NA < 0.002 NR70 0.002 NA NA NA 104 NA PFDoA (307-55-1) PFTrDA (72629-94-8) **NR70** 0.002 < 0.002 NA NA NA 100 NA PFTeDA (376-06-7) NR70 < 0.002 NA NA 118 NA 0.002 NA PFHxDA (67905-19-5) NR70 0.002 < 0.002 NA NA NA 91 NA PFODA (16517-11-6) NR70 0.005 < 0.005 NA NA NA 99 NA FOUEA (70887-84-2) NR70 0.001 < 0.001 NA NA NA 104 NA PFBS (375-73-5) **NR70** 0.001 < 0.001 NA NA NA 95 NA PFPeS (2706-91-4) NR70 0.001 < 0.001 NA NA 96 NA NA PFHxS (355-46-4) NR70 0.001 < 0.001 NA 102 NA NA NA PFHpS (375-92-8) NR70 0.001 < 0.001 NA NA NA 110 NA PFOS (1763-23-1) NR70 0.002 < 0.002 NA NA NA 107 NA PFNS (68259-12-1) NR70 0.001 < 0.001 NA NA NA 108 NA PFDS (335-77-3) NR70 0.001 < 0.001 NA NA NA 106 NA PFOSA (754-91-6) NR70 0.001 < 0.001 NA NA NA 106 NA N-MeFOSA (31506-32-8) NR70 0.002 < 0.002 NA NA NA 96 NA < 0.002 0.002 NA NA NA 98 NA N-EtFOSA (4151-50-2) NR70 **NR70** 0.002 < 0.002 NA NA NA 100 NA N-MeFOSAA (2355-31-9) NR70 0.002 < 0.002 NA NA 101 NA N-EtFOSAA(2991-50-6) NA NR70 0.005 < 0.005 NA NA NA 89 NA N-MeFOSE (24448-09-7) N-EtFOSE (1691-99-2) **NR70** 0.005 < 0.005 NA NA NA 128 NA **NR70** 0.001 NA NA < 0.001 NA NA 103 4:2 FTS (757124-72-4) 0.001 < 0.001 NA NA NA 108 NA **NR70** 6:2 FTS (27619-97-2) NA NA NA 8:2 FTS (39108-34-4) NR70 0.001 < 0.001 NA 101 **NR70** 0.002 < 0.002 NA NA NA 89 NA 10:2 FTS (120226-60-0) 8:2 diPAP (678-41-1) **NR70** 0.002 < 0.002 NA NA NA 107 NA

Results expressed in percentage (%) or mg/kg wherever appropriate.

Acceptable Spike recovery is 50-150%.

Maximum acceptable RPDs on spikes and duplicates is 40%.

'NA ' = Not Applicable.

RPD= Relative Percentage Difference.

Signed:

Date:

Eller

Danny Slee Organics Manager, NMI-North Ryde 13/08/2019

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

From: Peachey, James <<u>james.peachey@aecom.com</u>> Sent: Tuesday, 13 August 2019 3:34 PM To: Carsten Emrich <<u>Carsten.Emrich@alsglobal.com</u>> Subject: [EXTERNAL] - Additional analysis

CAUTION: This email originated from outside of ALS. Do not click links or open attachments unless you recognize the sender and are sure content is relevant to you.

Hi Carsten

Please could you arrange for the following samples to be analysed for TOPA (EP231X-TOP):

EB1919842-030 PR_BH03_190727

Regards

James Peachey Associate Director - Environment D +61 7 3553 3909 M +61 426 206 362 james.peachey@aecom.com

AECOM

Level 8, 540 Wickham Street, Fortitude Valley, QLD 4006 PO Box 1307 Fortitude Valley QLD 4006 T +61 7 3553 2000 F +61 7 3553 2050 aecom.com

Imagine it. Delivered.

LinkedIn Twitter Facebook Instagram

Environmental Division Brisbane Work Order Reference EB1921187

Telephone: + 61-7-3243 7222

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order Amendment	: EB1921187 : 1		
Client Contact Address	: AECOM Australia Pty Ltd : MR JAMES PEACHEY : Brisbane	Laboratory Contact Address	 Environmental Division Brisbane Carsten Emrich 2 Byth Street Stafford QLD Australia 4053
E-mail Telephone Facsimile	: james.peachey@aecom.com : +61 07 3553 2000 : +61 07 3553 2050	E-mail Telephone Facsimile	: carsten.emrich@alsglobal.com : +61 7 3552 8616 : +61-7-3243 7218
Project Order number C-O-C number Site Sampler	: 60609758_PR, : 60609758 : : : CAMDEN McCOSKER	Page Quote number QC Level	: 1 of 2 : EB2019AECOMAU0002 (BN/112/19 : NEPM 2013 B3 & ALS QC Standard
Dates Date Samples Receiv Client Requested Due Date	5	Issue Date Scheduled Reporting	: 09-Sep-2019 Date : 21-Aug-2019
Delivery Detail Mode of Delivery No. of coolers/boxes Receipt Detail	S Samples On Hand Samples On Hand Samples On Hand Samples On Hand	Security Seal Temperature No. of samples recei	: Not Available : ved / analysed : 4 / 4

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- This work order was created to rebatch samples from EB1920146, EB1919838, EB1919840 and EB1919842.

•

Discounted Package Prices apply only when specific ALS Group Codes ('W', 'S', 'NT' suites) are referenced on COCs.

- Please direct any turn around / technical queries to the laboratory contact designated above.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Analysis will be conducted by ALS Environmental, Brisbane, NATA accreditation no. 825, Site No. 818 (Micro site no. 18958).
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

Matrix: SOIL

tasks. Packages	may contain ad	lditional analyses, such		say
as the determin	ation of moisture	content and preparation		olids) Precursor (TOP) Assay
tasks, that are incl	uded in the package.			B
If no sampling	time is provided,	the sampling time will		
default 00:00 on	the date of samplin	ng. If no sampling date		s))
is provided, the	sampling date wi	ill be assumed by the		(solids) e Precu
laboratory and	displayed in bra	ickets without a time		
component			t B	EP231X (TOP) (s Total Oxidisable
Matrix: SOIL			A055-100 Content	× ŏ
			- EA055-103 ure Content	EP231X Total O>
Laboratory sample	Client sampling	Client sample ID	SOIL - EA	1 ^m
ID	date / time		SOIL	PFAS
	1	I		1
		+		
	1	i		
EB1921187-004	27-Jul-2019 00:00	PR_BH03_190727	 ✓ 	1

Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

Matrix: SOIL				Evaluation: × = Ho	olding time br	each ; ✓ = Within	holding time.
Method		Due for	Due for	Samples R	eceived	Instructions F	Received
Client Sample ID(s)	Container	extraction	analysis	Date	Evaluation	Date	Evaluation
EA055: Moisture C	ontent			-			
-							
L							. —
PR_BH03_190727	HDPE Soil Jar		10-Aug-2019	13-Aug-2019	*		

Requested Deliverables

ACCOUNTS PAYABLE

- A4 - AU Tax Invoice (INV)	Email	AP_CustomerService.ANZ@aecom.
		com
CAMDEN McCOSKER		
 *AU Certificate of Analysis - NATA (COA) 	Email	camden.mccosker@aecom.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	camden.mccosker@aecom.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	camden.mccosker@aecom.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	camden.mccosker@aecom.com
- Chain of Custody (CoC) (COC)	Email	camden.mccosker@aecom.com
- EDI Format - ESDAT (ESDAT)	Email	camden.mccosker@aecom.com
JAMES PEACHEY		
 *AU Certificate of Analysis - NATA (COA) 	Email	james.peachey@aecom.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	james.peachey@aecom.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	james.peachey@aecom.com
- A4 - AU Tax Invoice (INV)	Email	james.peachey@aecom.com
- Chain of Custody (CoC) (COC)	Email	james.peachey@aecom.com
- EDI Format - ESDAT (ESDAT)	Email	james.peachey@aecom.com

CERTIFICATE OF ANALYSIS Work Order : EB1921187-AD Page : 1 of 5 Amendment :1 Client Laboratory : AECOM Australia Pty Ltd : Environmental Division Brisbane Contact : MR JAMES PEACHEY Contact : Carsten Emrich Address Address : 2 Byth Street Stafford QLD Australia 4053 Brisbane Telephone : +61 07 3553 2000 Telephone : +61 7 3552 8616 Project : 60609758 PR **Date Samples Received** : 13-Aug-2019 15:34 Order number : 60609758 Date Analysis Commenced : 16-Aug-2019 C-O-C number · ____ Issue Date : 27-Aug-2019 13:02 Sampler : CAMDEN McCOSKER Site · ____ Quote number : BN/112/19 Accreditation No. 825 No. of samples received : 1 Accredited for compliance with ISO/IEC 17025 - Testing No. of samples analysed :1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Diana Mesa	2IC Organic Chemist	Brisbane Organics, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

- ~ = Indicates an estimated value.
- ٠
- Amendment (27/8/19): This report has been amended to split samples into individual work orders. All analysis results are as per the previous report

Page	: 3 of 5
Work Order	: EB1921187-AD Amendment 1
Client	: AECOM Australia Pty Ltd
Project	60609758_PR

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	PR_BH03_190727	 	
	Client sampling date / time		27-Jul-2019 00:00	 	 	
Compound	CAS Number	LOR	Unit	EB1921187-004	 	
				Result	 	
EA055: Moisture Content (Dried @ 105	5-110°C)					
Moisture Content		0.1	%	18.8	 	
EP231_TOP_A: Perfluoroalkyl Sulfoni	c Acids					
Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	 	
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	 	
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	0.0038	 	
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	0.0015	 	
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	0.108	 	
Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	 	
EP231_TOP_B: Perfluoroalkyl Carbox	ylic Acids					
Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	 	
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	0.0010	 	
Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	0.0046	 	
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	0.0002	 	
Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	0.0007	 	
Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	0.0152	 	
Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	 	
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	 	
Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	 	
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	 	
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	 	
EP231_TOP_C: Perfluoroalkyl Sulfon	amides					
Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	 	
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0005	 	

Page	: 4 of 5
Work Order	EB1921187-AD Amendment 1
Client	: AECOM Australia Pty Ltd
Project	60609758_PR

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	PR_BH03_190727	 	
	C	lient samplii	ng date / time	27-Jul-2019 00:00	 	
Compound	CAS Number	LOR	Unit	EB1921187-004	 	
				Result	 	
EP231_TOP_C: Perfluoroalkyl Sulfona	amides - Continued					
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<0.0005	 	
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.0005	mg/kg	<0.0005	 	
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<0.0005	 	
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0002	mg/kg	<0.0002	 	
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0002	mg/kg	<0.0002	 	
EP231_TOP_D: (n:2) Fluorotelomer Su	Ilfonic Acids					
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	 	
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	 	
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	 	
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	 	
EP231_TOP_P: PFAS Sums						
Sum of PFAS		0.0002	mg/kg	0.135	 	
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.0002	mg/kg	0.112	 	
Sum of TOP C4 - C14 Carboxylates and C - C8 Sulfonates	.4	0.0002	mg/kg	0.135	 	
Sum of TOP C4 - C14 as Fluorine		0.0002	mg/kg	0.0880	 	
EP231_TOP_S: PFAS Surrogate						
13C4-PFOS		0.0002	%	65.5	 	
13C8-PFOA		0.0002	%	69.5	 	

Page	5 of 5
Work Order	: EB1921187-AD Amendment 1
Client	: AECOM Australia Pty Ltd
Project	60609758_PR

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP231_TOP_S: PFAS Surrogate			
13C4-PFOS		60	130
13C8-PFOA		60	130

QUALITY CONTROL REPORT

Work Order	: EB1921187-AD	Page	: 1 of 5	
Amendment	: 1			
Client	AECOM Australia Pty Ltd	Laboratory	: Environmental Division E	Brisbane
Contact	: MR JAMES PEACHEY	Contact	: Carsten Emrich	
Address	:	Address	: 2 Byth Street Stafford Q	LD Australia 4053
	Brisbane			
Telephone	: +61 07 3553 2000	Telephone	: +61 7 3552 8616	
Project	: 60609758_PR	Date Samples Received	: 13-Aug-2019	ANHID.
Order number	: 60609758	Date Analysis Commenced	: 16-Aug-2019	
C-O-C number	:	Issue Date	: 27-Aug-2019	
Sampler	: CAMDEN McCOSKER			Hac-MRA NAIA
Site	:			
Quote number	: BN/112/19			Accreditation No. 825
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Diana Mesa	2IC Organic Chemist	Brisbane Organics, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EA055: Moisture Co	ntent (Dried @ 105-110	°C) (QC Lot: 2527602)							
EB1921187-001	Anonymous	EA055: Moisture Content		0.1	%	14.6	14.5	0.706	0% - 20%
EP231_TOP_A: Perf	luoroalkyl Sulfonic Aci	ds (QC Lot: 2527289)							
EB1921187-001	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	0.0093	0.0102	9.42	0% - 20%
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	0.0064	0.0072	10.7	0% - 20%
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	0.101	0.106	4.32	0% - 20%
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	0.0162	0.0148	9.04	0% - 20%
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	1.83	2.05	11.3	0% - 20%
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
EP231_TOP_B: Perf	luoroalkyl Carboxylic A	Acids (QC Lot: 2527289)							
EB1921187-001 Anonymous	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	0.0883	0.105	17.4	0% - 20%	
	-	EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	0.109	0.119	8.85	0% - 20%
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	0.0241	0.0253	5.06	0% - 20%
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	0.0357	0.0361	1.08	0% - 20%
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	0.183	0.164	11.3	0% - 20%
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	0.0344	# 0.0258	28.6	0% - 20%
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	0.0246	# 0.0186	27.7	0% - 20%
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	0.0012	0.0013	9.02	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	0.028	0.030	4.66	0% - 20%
EP231_TOP_C: Per	fluoroalkyl Sulfonamid	es (QC Lot: 2527289)							
EB1921187-001	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: N-Methyl perfluorooctane	2355-31-9	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		sulfonamidoacetic acid (MeFOSAA)							

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
P231_TOP_C: Per	fluoroalkyl Sulfonamid	es (QC Lot: 2527289) - continued							
EB1921187-001	Anonymous	EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
	EP231X: N-Ethyl perfluoroocta	EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
P231_TOP_D: (n:2) Fluorotelomer Sulfoni	ic Acids (QC Lot: 2527289)							
EB1921187-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
P231_TOP_P: PFA	S Sums (QC Lot: 2527)	289)							
B1921187-001	Anonymous	EP231X: Sum of PFAS		0.0002	mg/kg	2.49	2.71	8.53	0% - 20%
		EP231X: Sum of PFHxS and PFOS	355-46-4/1763- 23-1	0.0002	mg/kg	1.93	2.16	11.0	0% - 20%
		EP231X: Sum of TOP C4 - C14 Carboxylates and C4 - C8 Sulfonates		0.0002	mg/kg	2.49	2.71	8.53	0% - 20%
		EP231X: Sum of TOP C4 - C14 as Fluorine		0.0002	mg/kg	1.62	1.76	8.36	0% - 20%

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EP231_TOP_A: Perfluoroalkyl Sulfonic Acids(QCLot: 2	2527289)									
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002						
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002						
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	0.00236 mg/kg	71.6	50	150		
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002						
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	<0.0002	0.00232 mg/kg	64.2	50	150		
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002						
EP231 TOP B: Perfluoroalkyl Carboxylic Acids (QCLo	t: 2527289)									
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001						
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002						
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002						
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002						
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	0.0025 mg/kg	72.2	50	150		
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002						
EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002						
EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002						
EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002						
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002						
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005						
EP231_TOP_C: Perfluoroalkyl Sulfonamides (QCLot: 2	2527289)									
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002						
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0005						
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<0.0005						
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.0005	mg/kg	<0.0005						
P231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<0.0005						
P231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0002	mg/kg	<0.0002						
P231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0002	mg/kg	<0.0002						
EP231 TOP D: (n:2) Fluorotelomer Sulfonic Acids (QC	Lot: 2527289)									
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005						
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	0.00018 mg/kg	0.00	0	200		
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005						

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report						
				Report Spike		Spike Recovery (%)	Recovery Limits (%)				
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	Low	High				
EP231_TOP_D: (n:2) Fluorotelomer Sulfonic Acids(EP231 TOP D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2527289) - continued										
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005							

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

QA/QC Compliance Assessment to assist with Quality Review								
Work Order	: EB1921187	187 Page ::						
Amendment	: 1							
Client	: AECOM Australia Pty Ltd	Laboratory	: Environmental Division Brisbane					
Contact	MR JAMES PEACHEY	Telephone	: +61 7 3552 8616					
Project	: 60609758_PR	Date Samples Received	: 13-Aug-2019					
Site	:	Issue Date	: 27-Aug-2019					
Sampler	: CAMDEN McCOSKER	No. of samples received	: 4					
Order number	: 60609758	No. of samples analysed	: 4					

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- Duplicate outliers exist please see following pages for full details.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Duplicate (DUP) RPDs							
EP231_TOP_B: Perfluoroalkyl Carboxylic Acids			Perfluorodecanoic acid	335-76-2	28.6 %	0% - 20%	RPD exceeds LOR based limits
			(PFDA)				
EP231_TOP_B: Perfluoroalkyl Carboxylic Acids			Perfluoroundecanoic	2058-94-8	27.7 %	0% - 20%	RPD exceeds LOR based limits
			acid (PFUnDA)				

Outliers : Analysis Holding Time Compliance

Matrix: SOIL

Method	Extraction / Preparation			Analysis					
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days			
			overdue			overdue			
EA055: Moisture Content (Dried @ 105-110°C)									
HDPE Soil Jar									
				16-Aug-2019	15-Aug-2019	1			
HDPE Soil Jar									
				16-Aug-2019	07-Aug-2019	9			
HDPE Soil Jar									
PR_BH03_190727				16-Aug-2019	10-Aug-2019	6			
HDPE Soil Jar									
				16-Aug-2019	12-Aug-2019	4			

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation	: × = Holding time	breach ; 🗸 = Withi	in holding time.
Method	Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)							
HDPE Soil Jar (EA055)							
	01-Aug-2019				16-Aug-2019	15-Aug-2019	*
HDPE Soil Jar (EA055)							
	24-Jul-2019				16-Aug-2019	07-Aug-2019	*
HDPE Soil Jar (EA055)							
PR_BH03_190727	27-Jul-2019				16-Aug-2019	10-Aug-2019	*
HDPE Soil Jar (EA055)							
	29-Jul-2019				16-Aug-2019	12-Aug-2019	*

Matrix: SOIL				Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231_TOP_A: Perfluoroalkyl Sulfonic Acids							
HDPE Soil Jar (EP231X (TOP))	01-Aug-2019	16-Aug-2019	29-Jan-2020	1	17-Aug-2019	25-Sep-2019	~
HDPE Soil Jar (EP231X (TOP))	24-Jul-2019	16-Aug-2019	21-Jan-2020	1	17-Aug-2019	25-Sep-2019	1
HDPE Soil Jar (EP231X (TOP)) PR_BH03_190727	27-Jul-2019	16-Aug-2019	24-Jan-2020	1	17-Aug-2019	25-Sep-2019	1
HDPE Soil Jar (EP231X (TOP))	29-Jul-2019	16-Aug-2019	26-Jan-2020	1	17-Aug-2019	25-Sep-2019	1
EP231_TOP_B: Perfluoroalkyl Carboxylic Acids							
HDPE Soil Jar (EP231X (TOP))	01-Aug-2019	16-Aug-2019	29-Jan-2020	1	17-Aug-2019	25-Sep-2019	~
HDPE Soil Jar (EP231X (TOP))	24-Jul-2019	16-Aug-2019	21-Jan-2020	~	17-Aug-2019	25-Sep-2019	1
HDPE Soil Jar (EP231X (TOP)) PR_BH03_190727	27-Jul-2019	16-Aug-2019	24-Jan-2020	~	17-Aug-2019	25-Sep-2019	1
HDPE Soil Jar (EP231X (TOP))	29-Jul-2019	16-Aug-2019	26-Jan-2020	1	17-Aug-2019	25-Sep-2019	1
EP231_TOP_C: Perfluoroalkyl Sulfonamides							
HDPE Soil Jar (EP231X (TOP))	01-Aug-2019	16-Aug-2019	29-Jan-2020	1	17-Aug-2019	25-Sep-2019	1
HDPE Soil Jar (EP231X (TOP))	24-Jul-2019	16-Aug-2019	21-Jan-2020	1	17-Aug-2019	25-Sep-2019	✓
HDPE Soil Jar (EP231X (TOP)) PR_BH03_190727	27-Jul-2019	16-Aug-2019	24-Jan-2020	1	17-Aug-2019	25-Sep-2019	1
HDPE Soil Jar (EP231X (TOP))	29-Jul-2019	16-Aug-2019	26-Jan-2020	~	17-Aug-2019	25-Sep-2019	~
EP231_TOP_D: (n:2) Fluorotelomer Sulfonic Acids							
HDPE Soil Jar (EP231X (TOP))	01-Aug-2019	16-Aug-2019	29-Jan-2020	1	17-Aug-2019	25-Sep-2019	1
HDPE Soil Jar (EP231X (TOP))	24-Jul-2019	16-Aug-2019	21-Jan-2020	1	17-Aug-2019	25-Sep-2019	1
HDPE Soil Jar (EP231X (TOP)) PR_BH03_190727	27-Jul-2019	16-Aug-2019	24-Jan-2020	1	17-Aug-2019	25-Sep-2019	1
HDPE Soil Jar (EP231X (TOP))	29-Jul-2019	16-Aug-2019	26-Jan-2020	1	17-Aug-2019	25-Sep-2019	1

Page	: 4 of 6
Work Order	: EB1921187 Amendment 1
Client	: AECOM Australia Pty Ltd
Project	: 60609758_PR,

Matrix: SOIL				Evaluation	: × = Holding time	breach ; 🗸 = Withi	in holding time
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231_TOP_P: PFAS Sums							
HDPE Soil Jar (EP231X (TOP))	01-Aug-2019	16-Aug-2019	29-Jan-2020	~	17-Aug-2019	25-Sep-2019	✓
HDPE Soil Jar (EP231X (TOP))	24-Jul-2019	16-Aug-2019	21-Jan-2020	1	17-Aug-2019	25-Sep-2019	1
HDPE Soil Jar (EP231X (TOP)) PR_BH03_190727	27-Jul-2019	16-Aug-2019	24-Jan-2020	1	17-Aug-2019	25-Sep-2019	1
HDPE Soil Jar (EP231X (TOP))	29-Jul-2019	16-Aug-2019	26-Jan-2020	1	17-Aug-2019	25-Sep-2019	1

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

atrix: SOIL Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within spe					not within specification ; \checkmark = Quality Control frequency within specification.		
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PFAS by LCMSMS after oxidation (TOP)	EP231X (TOP)	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PFAS by LCMSMS after oxidation (TOP)	EP231X (TOP)	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PFAS by LCMSMS after oxidation (TOP)	EP231X (TOP)	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
PFAS by LCMSMS after oxidation (TOP)	EP231X (TOP)	SOIL	In house, following oxidation per Houtz,Erika F.; Sedlak,David L. (2012): Oxidative Conversion as a Means of Detecting Precursors to Perfluoroalkyl Acids in Urban Runoff. In Environmental Science & Technology 46 (17), pp. 9342¿9349.: A portion of the oxidised sample is mixed with methanol (1:1) prior to analysis by LC-Electrospray-MS-MS,Negative Mode using MRM. Where commercially available, isotopically labelled analogues of the target analytes are used as internal standards for quantification. Where a labelled analogue is not commercially available, the internal standard with similar chemistry and the closest retention time to the target is used for quantification. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers.
Preparation Methods	Method	Matrix	Method Descriptions
Sample Extraction for PFAS	EP231-PR	SOIL	In house

ANZ FQM - Generic Chain of Custody Form

.

.

CONSULTANT: AECOM	ADDRESS / OFFICE:	SAMPLER: NK	
PROJECT MANAGER (PM): James Peachey	SITE: QFES Home Hill	MOBILE: 0499989474	PHONE:
PROJECT NUMBER & TASK CODE: 60609758	P.O. NO.: 60609758 2.0	EMAIL REPORT TO: james.peachey@aecom.com	janelle passier@aecom.com:
RESULTS REQUIRED (Date):	QUOTE NO .: BN/112/19	ANALYSIS REQUIRED including SUITES (note - s	
COOLER SEAL (circle appropriate) Hold onto Intact: Yes No N/A SAMPLE TEMPERATURE	ents/special Handling/storage or disposal: > samples for further TOPA Selectio	PFAS Low Level OPA): PFAS TOPA # Level r Trace	TAS Full Suite
CHILLED: Yes No SAMPLE INFORMATION (note: S = Soil, W=Water) ALS ID MATRIX DATI	CONTAINER INFORMATION	eP231X-51X-LL: Coversity LL: Supple:	EP231X: P1

I			1		1	1]		1		1 1			
												-				
											Į					
											-					
		ELINQUISHED BY:	almlia	RECEIV	ED BY		dia			RECEIVE	<u>D BY</u>		· · · ·		METHOD OF SHIPM	<u>NT</u>
Name	MW	Date:	1/8/19	Name: N. SUTTON	1	Date:918	Nam	e: W	₽			Date:	3/8	(9]	Con' Note No:	
Of:		Time:	1 11500	of ALS MACK	<u>er </u>	Time: 30	Of:	ALS	BET	Ś		Time:			ransport Co:	
Water (Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved Plastic; AG = Amber Glass Unpreserved; AF =															
	V = VOA Vial HCI Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved; VA = Airfreight Unpreserved Vial SG = Sulfuric Preserved Vial SG = Sulfuric Preserved; VS = VOA Vial SG = SG															
	F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Stelle Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag. Soil Container Codes; Jar = Unpreserved glass jar															

COC Page of

les

c.

Telephone: + 61-7-3243 7222

₹OLD

AECOM

ANZ FQM - Generic Chain of Custody Form

.

.

τ

Q4AN(EV)-007-FM1

CONSULTANT: AECOM	ADDRESS / OFFICE:		SAMPLER: NK Destination Lab	boratory
PROJECT MANAGER (PM): James Peachey	SITE: QFES Ayr		MOBILE: 0499989474 PHONE: Brisbane	
PROJECT NUMBER & TASK CODE: 60609758	P.O. NO.:	60609758 2.0	EMAIL REPORT TO: james.peachey@aecom.com; janelle.passier@aecom.com;	
RESULTS REQUIRED (Date):	QUOTE NO .: BN/1	12/19	ANALYSIS REQUIRED including SUITES (note - suite codes must be listed to attract suite prices)	-
EOR LABORATORY USE ONLY COOLER SEAL (circle appropriete) Intext: Yes No N/A SAMPLE TEMPERATURE CHILLED: Yes No	COMMENTS/SPECIAL HANDLING/STOF Hold onto samples for furthe		Notes: e.g. Highly contamined Image: State of the s	d".
SAMPLE INFORMATION (note: \$ = Soil.	W=Water) <u>CC</u>	ONTAINER INFORMATION		
		Terrel home		

RELINQUISHED E	BY: ()	RECEIVED BY		RECEIVED BY	METHOD OF SHIPMENT	
Name: N.MM	Date: 9/8//9	Name: N.SUTTON	Date: 9819 Name:	Date:	Con' Note No:	
Of:	Time: 1 1 500	of: ALS MPOCAY	Time: 🕉 💓 Of:	Time:	Transport Co:	
Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved; AP - Ainfreight Unpreserved Plastic						
V = VOA Vial HCI Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved; VA = Alrifreight Unpreserved Vial SG = Sulfuric Preserved Amber Glass; H = HCl preserved Plastic; HS = HCl preserved Speciation bottle; SP = Sulfuric Preserved Plastic;						
F = Formaldehyde Preserved Glass; Z = Zinc Acetala Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag. Soil Container Codes: Jar = Unpreserved glass jar						

COC Page of

AECOM

ANZ FQM - Generic Chain of Custody Form

r

t

CONSULTANT: AECOM	ADDRESS / OFFICE:	SAMPLER: NK		Destination Laboratory
PROJECT MANAGER (PM): James Peachey	SITE: QFES Airlie Beach	MOBILE: 0499989474	PHONE:	Brisbane
PROJECT NUMBER & TASK CODE: 60609758	P.O. NO.: 60609758 2.0	EMAIL REPORT TO: james.peachey@aecom.c		
RESULTS REQUIRED (Date):	QUOTE NO.: BN /112/19		- suite codes must be listed to attract suite prices)	
FOR LABORATORY USE ONLY COOLER SEAL (circle appropriate) Intact: Yes No N/A SAMPLE TEMPERATURE SHILLED: Yes No	COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL: Hold onto samples for further TOPA Selection	PFAS Low Level OPA): PFAS TOPA & Level PFAS Full Suite PFAS Full Suite	PFAS Full Suite	Notes: e.g. Highly contaminated samples e.g. "High PAHs expected". Extra volume for QC or trace LORs etc.
SAMPLE INFORMATION (note: S = Sc	I, W=Water) CONTAINER INFORMATION	dns 31X-81: 231X-81: 231X-81:	231X:	

		┛━──┤				
RELINQUISHED BY:	RECEIVED BY		RECEIVED BY		METHOD OF SHIPMENT	
Name: N. MUO Date: 9/8/19	Name: N. JUTTON		Name:	Date:	Con' Note No:	
Of: 1500	OF ALS MACKAY		Of:	Time:	Transport Co:	
Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S-Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved; AP - Airfreight Unpreserved Plastic						
V = VOA Vial HCI Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved; AV = Airfreight Unpreserved Vial SG = Sulfuric Preserved Amber Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic;						
F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = St	erile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B	= Unpreserved Bag.		: Jar = Uлpreserved glass ja		

COC Page of

FQM - Generic Chain of Custody Form

AECOM

т

.

ANZ

Of:

Proserpine

Revision 1 June 15, 2016

FQM - Generic Chain of Custody Form (D4AN(EV)-007-FM1)

CONSULTANT:

PROJECT MANAGER (PM): James Peachev SITE QFES Proserbine MOBILE 0499989474 Brisbane PHONE PO NO · PROJECT NUMBER & TASK CODE: 60609758 60609758 2.0 EMAIL REPORT TO: james.peachey@aecom.com; janelle.passier@aecom.com; QUOTENO: BN/11-19 RESULTS REQUIRED (Date): ANALYSIS REQUIRED including SUITES (note - suite codes must be listed to attract suite prices) COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL FOR LABORATORY USE ONLY. Notes: e.g. Highly contaminated samples EP231X-LL (TOPA): PFAS TOP. Low Level EP231X-LL: PFAS Low Level EP231X-ST: PFAS Full Suite Super Trace Hold onto samples for further TOPA Selection COOLER SEAL (circle appropriate) EP231X: PFAS Full Suite e.g. "High PAHs expected". Intent Yes No NZA Extra volume for QC or trace LORs etc. SAMPLE TEMPERATURE CHILLED: Yes No SAMPLE INFORMATION (note: S = Soil, W=Water) CONTAINER INFORMATION OLD SAMPLE ID MATRIX DATE Time Type / Code Total bottle PR MW01 190807 w 7/08/19 Р х 1600 1 55 PR MW02 190807 w 7/08/19 1515 Р 1 х ЗP PR MW03 190807 w Р х 7/08/19 1440 1 37 PR MW04 190807 w Р х 7/08/19 1620 1 38 PR_QC104 190807 w Р х 7/08/19 4 PR_QC204_190807 w 7/08/19 Р х 1 Forward to NM 79 PR_QC303_190807 w Р х 7/08/19 1 RELINQUISHED BY: RECEIVED BY RECEIVED BY METHOD OF SHIPMENT Name: Nº VIIIO 8 119 Date: 88/19

Name:

Of

12:00

Time:

Date:

Time:

Con' Note No:

Transport Co:

COC Page of

SAMPLER: NK

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC: SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved; AP - Airfreight Unpreserved Plastic;

Name: N.SUTTA

Of: A

V = VOA Vial HCI Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved; AV = Airfreight Unpreserved Vial SG = Sulfuric Preserved Amber Glass; H = HCI preserved Plastic; HS = HCI preserved; VB = VOA Vial Sulfuric Preserved; AV = Airfreight Unpreserved Vial SG = Sulfuric Preserved Amber Glass; H = HCI preserved Plastic; HS = HCI preserved; VB = VOA Vial Sulfuric Preserved; AV = Airfreight Unpreserved; VB = Sulfuric Preserved; AV = Airfreight Unpreserved; VB = Sulfuric Preserved; Amber Glass; H = HCI preserved; Plastic; HS = HCI preserved; AV = Airfreight Unpreserved; VB = Sulfuric Preserved; AM = Airfreight Unpreserved; VB = Sulfuric Preserved; Amber Glass; H = HCI preserved; Plastic; HS = HCI preserved; AM = Airfreight Unpreserved; VB = Sulfuric Preserved; Amber Glass; H = HCI preserved; Plastic; HS = HCI preserved; AM = Airfreight Unpreserved; VB = Sulfuric; Preserved; Amber Glass; H = HCI preserved; Amber Glass Soil Container Codes: Jar = Unpreserved glass jar

s madeal

F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag

15:00

q

Date:

Time

ADDRESS / OFFICE:

Q4AN(EV)-007-FM1

Destination Laboratory

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: EB1921176				
Client Contact Address	: AECOM Australia Pty Ltd : MR JAMES PEACHEY : Brisbane	Laboratory Contact Address	 Environmental Division Brisbane Carsten Emrich 2 Byth Street Stafford QLD Australia 4053 		
E-mail Telephone Facsimile	: james.peachey@aecom.com : +61 07 3553 2000 : +61 07 3553 2050	E-mail Telephone Facsimile	: carsten.emrich@alsglobal.com : +61 7 3552 8616 : +61-7-3243 7218		
Project Order number C-O-C number Site Sampler	: 60609758 : 60609758 2.0 : : QFES : NK	Page Quote number QC Level	: 1 of 4 : EB2019AECOMAU0002 (BN/112/19) : NEPM 2013 B3 & ALS QC Standard		
Dates Date Samples Rec Client Requested D Date		Issue Date Scheduled Reporting [: 13-Aug-2019 Date : 22-Aug-2019		

Security Seal

Temperature

No. of samples received / analysed

Intact.

: 39 / 37

: 1.4, 1.2°C - Ice present

Delivery Details	
------------------	--

Mode of Delivery : Carrier No. of coolers/boxes : 2 Receipt Detail : MEDIUM ESKIES

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please be advised that samples "

"PR QC204 190807" will be forwarded to NMI for analysis. Please note that this will incur a freight forwarding fee.

- Discounted Package Prices apply only when specific ALS Group Codes ('W', 'S', 'NT' suites) are referenced on COCs.
- Super Trace PFAS analysis will be conducted by ALS Environmental, Sydney, NATA accreditation no. 825, Site No. 10911 (Micro site no. 14913).
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Analysis will be conducted by ALS Environmental, Brisbane, NATA accreditation no. 825, Site No. 818 (Micro site no. 18958).
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

FAS - Full Suite (28 analytes) OIL - EP231X (solids) OIL - EA055-103 oisture Content Matrix: SOIL Client sample ID Laboratory sample Client sampling ID date / time

Matrix: WATER Laboratory sample ID	Client sampling date / time	Client sample ID	(On Hold) WATER No analysis requested	WATER - EP231X-LL (EB) PFAS - Full Suite Low Level (28 analytes)	WATER - EP231X-ST PFAS - Super Trace Waters Long Suite (28
	· · · · · · · · · · · · · · · · · · ·				
	;;				
	;;				
	++				
	· · · · ·				
	· · · · · · · · · · · · · · · · · · ·				
	· · ·				

Issue Date	: 13-Aug-2019
Page	: 4 of 4
Work Order	EB1921176 Amendment 0
Client	: AECOM Australia Pty Ltd

	·	·	(On Hold) WATER No analysis requested	WATER - EP231X-LL (EB) PFAS - Full Suite Low Level (28 analytes)	WATER - EP231X.ST PFAS - Super Trace Waters Long Suite (28
	;				
	;	; ;			
	;	;			
	; ;	; ;			
	i	;			
EB1921176-034	07-Aug-2019 16:00	PR_MW01_190807		1	
EB1921176-035	07-Aug-2019 15:15	PR_MW02_190807		✓	
EB1921176-036	07-Aug-2019 14:40	PR_MW03_190807		1	
EB1921176-037	07-Aug-2019 16:20	PR_MW04_190807		✓	
EB1921176-038	07-Aug-2019 00:00	PR_QC104_190807		✓	
EB1921176-039	07-Aug-2019 00:00	PR_QC303_190807		✓	

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE

- A4 - AU Tax Invoice (INV)	Email	AP_CustomerService.ANZ@aecom. com
JAMES PEACHEY		
 *AU Certificate of Analysis - NATA (COA) 	Email	james.peachey@aecom.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	james.peachey@aecom.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	james.peachey@aecom.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	james.peachey@aecom.com
- A4 - AU Tax Invoice (INV)	Email	james.peachey@aecom.com
- Chain of Custody (CoC) (COC)	Email	james.peachey@aecom.com
- EDI Format - ESDAT (ESDAT)	Email	james.peachey@aecom.com
JANELLE PASSIER		
 *AU Certificate of Analysis - NATA (COA) 	Email	janelle.passier@aecom.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	janelle.passier@aecom.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	janelle.passier@aecom.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	janelle.passier@aecom.com
- A4 - AU Tax Invoice (INV)	Email	janelle.passier@aecom.com
- Chain of Custody (CoC) (COC)	Email	janelle.passier@aecom.com
- EDI Format - ESDAT (ESDAT)	Email	janelle.passier@aecom.com

CERTIFICATE OF ANALYSIS								
Work Order	EB1921176-AM	Page	: 1 of 7					
Amendment	: 3							
Client	: AECOM Australia Pty Ltd	Laboratory	: Environmental Division B	Brisbane				
Contact	: MR JAMES PEACHEY	Contact	: Carsten Emrich					
Address	:	Address	: 2 Byth Street Stafford QL	D Australia 4053				
Telephone Project Order number C-O-C number Sampler Site Quote number No. of samples received No. of samples analysed	Brisbane : +61 07 3553 2000 : 60609758 : 60609758 2.0 : : NK : QFES : BN/112/19 : 6 : 6	Telephone Date Samples Received Date Analysis Commenced Issue Date	: +61 7 3552 8616 : 13-Aug-2019 09:30 : 15-Aug-2019 : 04-Sep-2019 13:59	Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing				

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Diana Mesa	2IC Organic Chemist	Brisbane Organics, Stafford, QLD

RIGHT SOLUTIONS | RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• EP231X-LL: Samples were diluted due to matrix interference. LOR adjusted accordingly.

- Super Trace PFAS analysis will be conducted by ALS Environmental, Sydney, NATA accreditation no. 825, Site No. 10911 (Micro site no. 14913).
- Amendment (04/09/2019): This report has been amended and re-released to allow the reporting of additional analytical data.
- Amendment (29/8/19): This report has been amended to allow the splitting of the work order into 5 separate reports. All analysis results are as per the previous report.
- Amendment (30/8/19): This report has been amended to allow the the work order to be split into 4 separate reports. All analysis results are as per the previous report.
- EP231X-ST: Sample EB1921176_015 required dilution prior to extraction due to matrix interferences (high sediment content). LOR values have been adjusted accordingly.
- EP231X-LL & EP231X: Matrix spike shows results out of control limit due to primary sample matrix interference. Confirmed by re-extraction and re-analysis.
- EP231X: Particular samples show poor surrogate recovery due to matrix interference. Confirmed by re-extraction and re-analysis.
- EP231X: Duplicate shows results out of control limit due to sample heterogeneity. Confirmed by re-extraction and re-analysis.

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	PR_MW01_190807	PR_MW02_190807	PR_MW03_190807	PR_MW04_190807	PR_QC104_190807
	C	ient samplir	ng date / time	07-Aug-2019 16:00	07-Aug-2019 15:15	07-Aug-2019 14:40	07-Aug-2019 16:20	07-Aug-2019 00:00
Compound	CAS Number	LOR	Unit	EB1921176-034	EB1921176-035	EB1921176-036	EB1921176-037	EB1921176-038
				Result	Result	Result	Result	Result
EP231A: Perfluoroalkyl Sulfonic Acids								
Perfluorobutane sulfonic acid	375-73-5	0.002	µg/L	0.096	0.680	0.091	0.122	0.680
(PFBS)								
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.002	µg/L	0.134	1.09	0.151	0.234	1.01
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.002	µg/L	1.46	11.4	1.82	2.50	10.9
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.002	µg/L	0.119	0.800	0.103	0.149	0.713
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.002	µg/L	4.10	37.6	7.92	6.96	34.9
Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.002	µg/L	<0.010	<0.100	<0.010	<0.010	<0.010
EP231B: Perfluoroalkyl Carboxylic Acid	ds							
Perfluorobutanoic acid (PFBA)	375-22-4	0.01	µg/L	<0.05	<0.50	0.02	0.02	0.12
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.002	µg/L	0.036	0.260	0.031	0.041	0.252
Perfluorohexanoic acid (PFHxA)	307-24-4	0.002	µg/L	0.128	0.990	0.171	0.101	0.981
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.002	µg/L	0.026	0.230	0.026	0.034	0.241
Perfluorooctanoic acid (PFOA)	335-67-1	0.002	µg/L	0.063	0.550	0.073	0.076	0.557
Perfluorononanoic acid (PFNA)	375-95-1	0.002	µg/L	0.018	0.350	0.148	0.153	0.386
Perfluorodecanoic acid (PFDA)	335-76-2	0.002	µg/L	<0.010	<0.100	<0.010	<0.010	0.017
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.002	µg/L	0.037	0.150	0.031	<0.010	0.111
Perfluorododecanoic acid (PFDoDA)	307-55-1	0.002	µg/L	<0.010	<0.100	<0.010	<0.010	<0.010
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.002	µg/L	<0.010	<0.100	<0.010	<0.010	<0.010
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.005	µg/L	<0.025	<0.250	<0.025	<0.025	<0.025
EP231C: Perfluoroalkyl Sulfonamides								
Perfluorooctane sulfonamide (FOSA)	754-91-6	0.002	µg/L	<0.010	<0.100	<0.010	<0.010	<0.010
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.005	µg/L	<0.025	<0.250	<0.025	<0.025	<0.025
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.005	µg/L	<0.025	<0.250	<0.025	<0.025	<0.025

Page	: 4 of 7
Work Order	: EB1921176-AM Amendment 3
Client	: AECOM Australia Pty Ltd
Project	60609758

Sub-Matrix: WATER (Matrix: WATER)		Client sample ID		PR_MW01_190807	PR_MW02_190807	PR_MW03_190807	PR_MW04_190807	PR_QC104_190807
	Cl	Client sampling date / time		07-Aug-2019 16:00	07-Aug-2019 15:15	07-Aug-2019 14:40	07-Aug-2019 16:20	07-Aug-2019 00:00
Compound	CAS Number	LOR	Unit	EB1921176-034	EB1921176-035	EB1921176-036	EB1921176-037	EB1921176-038
				Result	Result	Result	Result	Result
EP231C: Perfluoroalkyl Sulfonamide	s - Continued							
N-Methyl perfluorooctane	24448-09-7	0.005	µg/L	<0.025	<0.250	<0.025	<0.025	<0.025
sulfonamidoethanol (MeFOSE)								
N-Ethyl perfluorooctane	1691-99-2	0.005	µg/L	<0.025	<0.250	<0.025	<0.025	<0.025
sulfonamidoethanol (EtFOSE)								
N-Methyl perfluorooctane	2355-31-9	0.002	µg/L	<0.010	<0.100	<0.010	<0.010	<0.010
sulfonamidoacetic acid								
(MeFOSAA)								
N-Ethyl perfluorooctane	2991-50-6	0.002	µg/L	<0.010	<0.100	<0.010	<0.010	<0.010
sulfonamidoacetic acid								
(EtFOSAA)								
EP231D: (n:2) Fluorotelomer Sulfon								
4:2 Fluorotelomer sulfonic acid	757124-72-4	0.005	µg/L	<0.010	<0.100	<0.010	<0.010	<0.010
(4:2 FTS)								
6:2 Fluorotelomer sulfonic acid	27619-97-2	0.005	µg/L	0.010	<0.100	<0.010	<0.010	0.045
(6:2 FTS)		0.005		-0.040	-0.400	10.010	-0.010	
8:2 Fluorotelomer sulfonic acid	39108-34-4	0.005	µg/L	<0.010	<0.100	<0.010	<0.010	0.017
(8:2 FTS)	100000.00.0	0.005		<0.010	<0.100	<0.010	<0.010	<0.010
10:2 Fluorotelomer sulfonic acid	120226-60-0	0.005	µg/L	<0.010	<0.100	<0.010	<0.010	<0.010
(10:2 FTS)								
EP231P: PFAS Sums		0.000		• ••		10.0		
Sum of PFAS		0.002	µg/L	6.23	54.1	10.6	10.4	50.9
Sum of PFHxS and PFOS	355-46-4/1763-23-	0.002	µg/L	5.56	49.0	9.74	9.46	45.8
Sum of PFAS (WA DER List)		0.002	µg/L	5.92	51.7	10.2	9.85	48.7
EP231S: PFAS Surrogate								
13C4-PFOS		0.002	%	124	120	112	127	120
13C8-PFOA		0.002	%	123	125	120	117	122

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	PR_QC303_190807	 	
	Client sampling date / time			07-Aug-2019 00:00	 	
Compound	CAS Number	LOR	Unit	EB1921176-039	 	
				Result	 	
EP231A: Perfluoroalkyl Sulfonic Acids						
Perfluorobutane sulfonic acid	375-73-5	0.002	µg/L	<0.002	 	
(PFBS)						
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.002	µg/L	<0.002	 	
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.002	µg/L	<0.002	 	
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.002	µg/L	<0.002	 	
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.002	µg/L	<0.002	 	
Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.002	µg/L	<0.002	 	
EP231B: Perfluoroalkyl Carboxylic Acid	ls					
Perfluorobutanoic acid (PFBA)	375-22-4	0.01	µg/L	<0.01	 	
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.002	µg/L	<0.002	 	
Perfluorohexanoic acid (PFHxA)	307-24-4	0.002	µg/L	<0.002	 	
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.002	µg/L	<0.002	 	
Perfluorooctanoic acid (PFOA)	335-67-1	0.002	µg/L	<0.002	 	
Perfluorononanoic acid (PFNA)	375-95-1	0.002	µg/L	<0.002	 	
Perfluorodecanoic acid (PFDA)	335-76-2	0.002	µg/L	<0.002	 	
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.002	µg/L	<0.002	 	
Perfluorododecanoic acid (PFDoDA)	307-55-1	0.002	µg/L	<0.002	 	
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.002	µg/L	<0.002	 	
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.005	µg/L	<0.005	 	
EP231C: Perfluoroalkyl Sulfonamides						
Perfluorooctane sulfonamide (FOSA)	754-91-6	0.002	µg/L	<0.002	 	
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.005	µg/L	<0.005	 	
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.005	µg/L	<0.005	 	

Page	: 6 of 7
Work Order	: EB1921176-AM Amendment 3
Client	: AECOM Australia Pty Ltd
Project	60609758

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			PR_QC303_190807						
	Cl	Client sampling date / time		07-Aug-2019 00:00						
Compound	CAS Number	LOR	Unit	EB1921176-039						
				Result						
P231C: Perfluoroalkyl Sulfonamides - Continued										
N-Methyl perfluorooctane	24448-09-7	0.005	µg/L	<0.005						
sulfonamidoethanol (MeFOSE)										
N-Ethyl perfluorooctane	1691-99-2	0.005	µg/L	<0.005						
sulfonamidoethanol (EtFOSE)										
N-Methyl perfluorooctane	2355-31-9	0.002	µg/L	<0.002						
sulfonamidoacetic acid										
(MeFOSAA)										
N-Ethyl perfluorooctane	2991-50-6	0.002	µg/L	<0.002						
sulfonamidoacetic acid										
(EtFOSAA)										
EP231D: (n:2) Fluorotelomer Sulfor										
4:2 Fluorotelomer sulfonic acid	757124-72-4	0.005	µg/L	<0.005						
(4:2 FTS)										
6:2 Fluorotelomer sulfonic acid	27619-97-2	0.005	µg/L	<0.005						
(6:2 FTS)		0.005		-0.005						
8:2 Fluorotelomer sulfonic acid	39108-34-4	0.005	µg/L	<0.005						
(8:2 FTS)	100000.00.0	0.005		<0.005						
10:2 Fluorotelomer sulfonic acid	120226-60-0	0.005	µg/L	<0.005						
(10:2 FTS)						I				
EP231P: PFAS Sums		0.000		-0.000						
Sum of PFAS		0.002	µg/L	<0.002						
Sum of PFHxS and PFOS	355-46-4/1763-23-	0.002	µg/L	<0.002						
Sum of PFAS (WA DER List)	1	0.002	μg/L	<0.002						
		0.002	ру/с 	~0.002						
EP231S: PFAS Surrogate		0.000	0/	AE A						
13C4-PFOS		0.002	%	35.9						
13C8-PFOA		0.002	%	45.5						

Page	: 7 of 7
Work Order	: EB1921176-AM Amendment 3
Client	: AECOM Australia Pty Ltd
Project	60609758

Surrogate Control Limits

Sub-Matrix: WATER	Recovery Limits (%)		
Compound	CAS Number	Low	High
EP231S: PFAS Surrogate			
13C4-PFOS		70	130
13C8-PFOA		70	130

QUALITY CONTROL REPORT · EB1921176-AM Work Order Page : 1 of 11 : 3 Amendment Client Laboratory : Environmental Division Brisbane : AECOM Australia Pty Ltd : MR JAMES PEACHEY Contact Contact : Carsten Emrich Address Address : 2 Byth Street Stafford QLD Australia 4053 Brisbane Telephone Telephone : +61 7 3552 8616 : +61 07 3553 2000 Project Date Samples Received 60609758 : 13-Aug-2019 Order number : 60609758 2.0 Date Analysis Commenced : 15-Aug-2019 Issue Date · 04-Sep-2019 C-O-C number · ____ Sampler : NK Site : QFES Quote number : BN/112/19 Accreditation No. 825 No. of samples received : 6 Accredited for compliance with ISO/IEC 17025 - Testing No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Diana Mesa	2IC Organic Chemist	Brisbane Organics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
P231A: Perfluoroa	Ikyl Sulfonic Acids (Q	C Lot: 2524698)								
EB1921176-001 Anonymou	Anonymous	EP231X-LL: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.002	µg/L	<0.010	<0.010	0.00	No Limit	
		EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.002	µg/L	<0.010	0.010	0.00	No Limit	
		EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.002	µg/L	0.090	0.083	8.09	No Limit	
		EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.002	µg/L	<0.010	<0.010	0.00	No Limit	
		EP231X-LL: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.002	µg/L	0.056	0.031	57.5	No Limit	
		EP231X-LL: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.002	µg/L	<0.010	<0.010	0.00	No Limit	
EB1921176-020 Anonymous	Anonymous	EP231X-LL: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.002	µg/L	<0.100	<0.100	0.00	No Limit	
		EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.002	µg/L	<0.100	<0.100	0.00	No Limit	
		EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.002	µg/L	4.22	4.05	4.11	0% - 20%	
		EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.002	µg/L	0.250	0.300	18.2	No Limit	
		EP231X-LL: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.002	µg/L	59.9	# 47.1	23.9	0% - 20%	
		EP231X-LL: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.002	µg/L	<0.100	<0.100	0.00	No Limit	
P231A: Perfluoroa	Ikyl Sulfonic Acids (Q	C Lot: 2524699)					·			
EB1921138-002	Anonymous	EP231X-LL: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.002	µg/L	0.205	0.205	0.00	0% - 20%	

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231A: Perfluoroa	kyl Sulfonic Acids (QC	C Lot: 2524699) - continued							
EB1921138-002	Anonymous	EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.002	µg/L	<0.010	0.033	107	No Limit
		EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.002	µg/L	1.37	1.30	4.64	0% - 20%
		EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.002	µg/L	<0.010	<0.010	0.00	No Limit
		EP231X-LL: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.002	µg/L	0.202	0.235	15.1	0% - 20%
		EP231X-LL: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.002	µg/L	<0.010	<0.010	0.00	No Limit
P231B: Perfluoroa	Ikyl Carboxylic Acids	(QC Lot: 2524698)							
EB1921176-001	Anonymous	EP231X-LL: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.002	µg/L	<0.010	<0.010	0.00	No Limit
		EP231X-LL: Perfluorohexanoic acid (PFHxA)	307-24-4	0.002	µg/L	<0.010	<0.010	0.00	No Limit
		EP231X-LL: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.002	μg/L	<0.010	<0.010	0.00	No Limit
		EP231X-LL: Perfluorooctanoic acid (PFOA)	335-67-1	0.002	μg/L	<0.010	<0.010	0.00	No Limit
		EP231X-LL: Perfluorononanoic acid (PFNA)	375-95-1	0.002	μg/L	<0.010	<0.010	0.00	No Limit
		EP231X-LL: Perfluorodecanoic acid (PFDA)	335-76-2	0.002	μg/L	<0.010	<0.010	0.00	No Limit
		EP231X-LL: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.002	µg/L	<0.010	<0.010	0.00	No Limit
		EP231X-LL: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.002	µg/L	<0.010	<0.010	0.00	No Limit
		EP231X-LL: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.002	µg/L	<0.010	<0.010	0.00	No Limit
		EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.005	µg/L	<0.025	<0.025	0.00	No Limit
		EP231X-LL: Perfluorobutanoic acid (PFBA)	375-22-4	0.01	µg/L	<0.05	<0.05	0.00	No Limit
EB1921176-020	Anonymous	EP231X-LL: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.002	µg/L	0.260	0.260	0.00	No Limit
		EP231X-LL: Perfluorohexanoic acid (PFHxA)	307-24-4	0.002	µg/L	0.380	0.340	11.1	No Limit
		EP231X-LL: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.002	µg/L	0.610	0.550	10.3	No Limit
		EP231X-LL: Perfluorooctanoic acid (PFOA)	335-67-1	0.002	µg/L	0.930	0.880	5.52	No Limit
		EP231X-LL: Perfluorononanoic acid (PFNA)	375-95-1	0.002	µg/L	0.110	0.130	16.7	No Limit
		EP231X-LL: Perfluorodecanoic acid (PFDA)	335-76-2	0.002	µg/L	<0.100	<0.100	0.00	No Limit
		EP231X-LL: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.002	µg/L	<0.100	<0.100	0.00	No Limit
		EP231X-LL: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.002	µg/L	<0.100	<0.100	0.00	No Limit
		EP231X-LL: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.002	µg/L	<0.100	<0.100	0.00	No Limit
		EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.005	µg/L	<0.250	<0.250	0.00	No Limit
		EP231X-LL: Perfluorobutanoic acid (PFBA)	375-22-4	0.01	µg/L	<0.50	<0.50	0.00	No Limit
P231B: Perfluoroa	Ikyl Carboxylic Acids	(QC Lot: 2524699)							
EB1921138-002	Anonymous	EP231X-LL: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.002	µg/L	0.317	0.327	3.10	0% - 20%
		EP231X-LL: Perfluorohexanoic acid (PFHxA)	307-24-4	0.002	μg/L	0.952	0.959	0.733	0% - 20%
		EP231X-LL: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.002	μg/L	0.334	0.320	4.28	0% - 20%
		EP231X-LL: Perfluorooctanoic acid (PFOA)	335-67-1	0.002	µg/L	0.602	0.630	4.54	0% - 20%

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
P231B: Perfluoroa	alkyl Carboxylic Acids ((QC Lot: 2524699) - continued							
EB1921138-002	Anonymous	EP231X-LL: Perfluorononanoic acid (PFNA)	375-95-1	0.002	μg/L	0.020	0.019	5.13	No Limit
		EP231X-LL: Perfluorodecanoic acid (PFDA)	335-76-2	0.002	µg/L	<0.010	<0.010	0.00	No Limit
		EP231X-LL: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.002	μg/L	<0.010	<0.010	0.00	No Limit
		EP231X-LL: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.002	μg/L	<0.010	<0.010	0.00	No Limit
		EP231X-LL: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.002	μg/L	<0.010	<0.010	0.00	No Limit
		EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.005	µg/L	<0.025	<0.025	0.00	No Limit
		EP231X-LL: Perfluorobutanoic acid (PFBA)	375-22-4	0.01	μg/L	1.49	1.32	12.0	0% - 20%
P231C: Perfluoroa	lkyl Sulfonamides (QC	Lot: 2524698)							
EB1921176-001	Anonymous	EP231X-LL: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.002	μg/L	<0.010	<0.010	0.00	No Limit
		EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.002	μg/L	<0.010	<0.010	0.00	No Limit
		EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.002	µg/L	<0.010	<0.010	0.00	No Limit
		EP231X-LL: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.005	µg/L	<0.025	<0.025	0.00	No Limit
		EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.005	µg/L	<0.025	<0.025	0.00	No Limit
		EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.005	µg/L	<0.025	<0.025	0.00	No Limit
		EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.005	µg/L	<0.025	<0.025	0.00	No Limit
B1921176-020	Anonymous	EP231X-LL: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.002	µg/L	<0.100	<0.100	0.00	No Limit
		EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.002	µg/L	<0.100	<0.100	0.00	No Limit
		EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.002	µg/L	<0.100	<0.100	0.00	No Limit
		EP231X-LL: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.005	µg/L	<0.250	<0.250	0.00	No Limit
		EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.005	µg/L	<0.250	<0.250	0.00	No Limit
		EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.005	µg/L	<0.250	<0.250	0.00	No Limit
		EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.005	µg/L	<0.250	<0.250	0.00	No Limit
P231C: Perfluoroa	lkyl Sulfonamides (QC								
B1921138-002	Anonymous	EP231X-LL: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.002	µg/L	<0.010	<0.010	0.00	No Limit
		EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.002	µg/L	0.156	0.144	8.00	0% - 50%
		EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.002	µg/L	<0.010	<0.010	0.00	No Limit

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231C: Perfluoroal	lkyl Sulfonamides (QC	Lot: 2524699) - continued							
EB1921138-002	Anonymous	EP231X-LL: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.005	µg/L	<0.025	<0.025	0.00	No Limit
		EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.005	µg/L	<0.025	<0.025	0.00	No Limit
		EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.005	µg/L	<0.025	<0.025	0.00	No Limit
		EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.005	µg/L	<0.025	<0.025	0.00	No Limit
EP231D: (n:2) Fluor	rotelomer Sulfonic Acid	s (QC Lot: 2524698)							
EB1921176-001	Anonymous	EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.005	µg/L	<0.010	<0.010	0.00	No Limit
		EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.005	µg/L	<0.010	<0.010	0.00	No Limit
		EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.005	µg/L	<0.010	<0.010	0.00	No Limit
		EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.005	µg/L	<0.010	<0.010	0.00	No Limit
EB1921176-020	Anonymous	EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.005	µg/L	<0.100	<0.100	0.00	No Limit
		EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.005	µg/L	1.35	1.37	1.47	0% - 50%
		EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.005	µg/L	<0.100	<0.100	0.00	No Limit
		EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.005	µg/L	<0.100	<0.100	0.00	No Limit
EP231D: (n:2) Fluor	rotelomer Sulfonic Acid	s (QC Lot: 2524699)							
EB1921138-002	Anonymous	EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.005	µg/L	<0.010	<0.010	0.00	No Limit
		EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.005	µg/L	0.190	0.196	3.11	0% - 50%
		EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.005	µg/L	0.022	0.022	0.00	No Limit
		EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.005	µg/L	<0.010	<0.010	0.00	No Limit
P231P: PFAS Sum	s (QC Lot: 2524698)								
EB1921176-001	Anonymous	EP231X-LL: Sum of PFAS		0.002	µg/L	0.146	0.124	16.3	0% - 50%
		EP231X-LL: Sum of PFHxS and PFOS	355-46-4/1763- 23-1	0.002	µg/L	0.146	0.114	24.6	0% - 50%
		EP231X-LL: Sum of PFAS (WA DER List)		0.002	µg/L	0.146	0.114	24.6	0% - 50%
EB1921176-020	Anonymous	EP231X-LL: Sum of PFAS		0.002	µg/L	68.0	# 55.0	21.2	0% - 20%

Page	: 6 of 11
Work Order	EB1921176-AM Amendment 3
Client	: AECOM Australia Pty Ltd
Project	: 60609758

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EP231P: PFAS Sums	G (QC Lot: 2524698) - c	ontinued								
EB1921176-020	Anonymous	EP231X-LL: Sum of PFHxS and PFOS	355-46-4/1763-	0.002	μg/L	64.1	# 51.2	22.5	0% - 20%	
			23-1							
		EP231X-LL: Sum of PFAS (WA DER List)		0.002	µg/L	67.6	# 54.6	21.4	0% - 20%	
EP231P: PFAS Sums	Gige (QC Lot: 2524699)									
EB1921138-002	Anonymous	EP231X-LL: Sum of PFAS		0.002	μg/L	5.86	5.71	2.59	0% - 20%	
		EP231X-LL: Sum of PFHxS and PFOS	355-46-4/1763-	0.002	μg/L	1.57	1.54	2.38	0% - 20%	
			23-1							
		EP231X-LL: Sum of PFAS (WA DER List)		0.002	µg/L	5.68	5.51	3.04	0% - 20%	

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 2524	698)							
EP231X-LL: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.002	μg/L	<0.002	0.0442 µg/L	93.7	50	130
EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.002	μg/L	<0.002	0.0469 µg/L	99.1	50	130
EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.002	μg/L	<0.002	0.0473 µg/L	85.2	50	130
EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.002	μg/L	<0.002	0.0476 µg/L	93.5	50	130
EP231X-LL: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.002	μg/L	<0.002	0.0464 µg/L	77.6	50	130
EP231X-LL: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.002	μg/L	<0.002	0.0482 µg/L	64.1	40	130
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 2524	699)							
EP231X-LL: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.002	μg/L	<0.002	0.0442 µg/L	96.4	50	130
EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.002	μg/L	<0.002	0.0469 µg/L	108	50	130
EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.002	μg/L	<0.002	0.0473 µg/L	90.5	50	130
EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.002	μg/L	<0.002	0.0476 µg/L	106	50	130
EP231X-LL: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.002	μg/L	<0.002	0.0464 µg/L	75.4	50	130
EP231X-LL: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.002	μg/L	<0.002	0.0482 µg/L	75.3	40	130
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 25	524698)							
EP231X-LL: Perfluorobutanoic acid (PFBA)	375-22-4	0.01	μg/L	<0.01	0.25 μg/L	85.6	50	130
EP231X-LL: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.002	μg/L	<0.002	0.05 µg/L	86.2	50	130
EP231X-LL: Perfluorohexanoic acid (PFHxA)	307-24-4	0.002	μg/L	<0.002	0.05 µg/L	91.2	50	130
EP231X-LL: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.002	μg/L	<0.002	0.05 µg/L	90.6	50	130
EP231X-LL: Perfluorooctanoic acid (PFOA)	335-67-1	0.002	μg/L	<0.002	0.05 µg/L	88.0	50	130
EP231X-LL: Perfluorononanoic acid (PFNA)	375-95-1	0.002	μg/L	<0.002	0.05 µg/L	75.6	50	130
EP231X-LL: Perfluorodecanoic acid (PFDA)	335-76-2	0.002	μg/L	<0.002	0.05 µg/L	64.4	50	130
EP231X-LL: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.002	μg/L	<0.002	0.05 µg/L	69.6	40	130
EP231X-LL: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.002	μg/L	<0.002	0.05 µg/L	67.8	40	130
EP231X-LL: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.002	μg/L	<0.002	0.05 µg/L	61.8	40	130
EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.005	μg/L	<0.005	0.125 µg/L	79.3	40	130
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 25	524699)							
EP231X-LL: Perfluorobutanoic acid (PFBA)	375-22-4	0.01	μg/L	<0.01	0.25 μg/L	92.4	50	130
EP231X-LL: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.002	μg/L	<0.002	0.05 µg/L	85.2	50	130
EP231X-LL: Perfluorohexanoic acid (PFHxA)	307-24-4	0.002	μg/L	<0.002	0.05 µg/L	94.8	50	130
EP231X-LL: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.002	μg/L	<0.002	0.05 µg/L	90.2	50	130
EP231X-LL: Perfluorooctanoic acid (PFOA)	335-67-1	0.002	μg/L	<0.002	0.05 µg/L	88.2	50	130
EP231X-LL: Perfluorononanoic acid (PFNA)	375-95-1	0.002	μg/L	<0.002	0.05 µg/L	81.2	50	130
EP231X-LL: Perfluorodecanoic acid (PFDA)	335-76-2	0.002	μg/L	<0.002	0.05 µg/L	70.8	50	130
EP231X-LL: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.002	μg/L	<0.002	0.05 µg/L	62.6	40	130

Page	: 8 of 11
Work Order	: EB1921176-AM Amendment 3
Client	: AECOM Australia Pty Ltd
Project	: 60609758

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 2524	699) - continued							
EP231X-LL: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.002	μg/L	<0.002	0.05 µg/L	66.2	40	130
EP231X-LL: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.002	μg/L	<0.002	0.05 µg/L	85.4	40	130
EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.005	μg/L	<0.005	0.125 µg/L	78.2	40	130
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2524698)							
EP231X-LL: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.002	μg/L	<0.002	0.05 µg/L	81.8	40	130
EP231X-LL: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.005	µg/L	<0.005	0.125 µg/L	88.2	40	130
EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.005	μg/L	<0.005	0.125 µg/L	57.3	40	130
EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.005	µg/L	<0.005	0.125 µg/L	57.3	50	130
EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.005	µg/L	<0.005	0.125 µg/L	60.6	40	130
EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.002	µg/L	<0.002	0.05 µg/L	53.4	50	130
EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.002	µg/L	<0.002	0.05 µg/L	51.2	40	130
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2524699)							
EP231X-LL: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.002	μg/L	<0.002	0.05 µg/L	73.4	40	130
EP231X-LL: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.005	µg/L	<0.005	0.125 µg/L	64.6	40	130
EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.005	μg/L	<0.005	0.125 µg/L	61.6	40	130
EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.005	µg/L	<0.005	0.125 µg/L	67.0	50	130
EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.005	µg/L	<0.005	0.125 µg/L	69.7	40	130
EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.002	µg/L	<0.002	0.05 μg/L	64.6	50	130
EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.002	µg/L	<0.002	0.05 μg/L	58.8	40	130
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2	524698)							
EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.005	μg/L	<0.005	0.0467 µg/L	89.9	50	130
EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.005	μg/L	<0.005	0.0474 µg/L	96.0	50	130
EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.005	μg/L	<0.005	0.0479 µg/L	72.0	50	130
EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.005	μg/L	<0.005	0.0482 µg/L	56.6	50	130
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2	524699)							
EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.005	μg/L	<0.005	0.0467 µg/L	101	50	130
EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.005	μg/L	<0.005	0.0474 µg/L	98.7	50	130
EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.005	μg/L	<0.005	0.0479 µg/L	79.7	50	130
EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.005	µg/L	<0.005	0.0482 µg/L	69.7	50	130

Sub-Matrix: WATER				Method Blank (MB)		S) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP231P: PFAS Sums (QCLot: 2524698)								
EP231X-LL: Sum of PFAS		0.002	μg/L	<0.002				
EP231X-LL: Sum of PFHxS and PFOS	355-46-4/17	0.002	µg/L	<0.002				
	63-23-1							
EP231X-LL: Sum of PFAS (WA DER List)		0.002	µg/L	<0.002				
EP231P: PFAS Sums (QCLot: 2524699)								
EP231X-LL: Sum of PFAS		0.002	µg/L	<0.002				
EP231X-LL: Sum of PFHxS and PFOS	355-46-4/17	0.002	μg/L	<0.002				
	63-23-1							
EP231X-LL: Sum of PFAS (WA DER List)		0.002	μg/L	<0.002				

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: WATER				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery I	Limits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP231A: Perfluoro	oalkyl Sulfonic Acids (QCLot: 2524698	3)					
EB1921176-002	Anonymous	EP231X-LL: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.05 µg/L	114	50	130
		EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.05 µg/L	108	50	130
		EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.05 µg/L	82.4	50	130
		EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.05 µg/L	123	50	130
		EP231X-LL: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.05 µg/L	# Not Determined	50	130
		EP231X-LL: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.05 µg/L	107	40	130
	oalkyl Sulfonic Acids (QCLot: 2524699)					
EB1921138-003	Anonymous	EP231X-LL: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.05 µg/L	108	50	130
		EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.05 µg/L	73.4	50	130
		EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.05 µg/L	85.4	50	130
		EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.05 µg/L	130	50	130
		EP231X-LL: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.05 µg/L	100	50	130
		EP231X-LL: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.05 µg/L	110	40	130
EP231B: Perfluor	oalkyl Carboxylic Acids (QCLot: 2524	698)					
EB1921176-002	Anonymous	EP231X-LL: Perfluorobutanoic acid (PFBA)	375-22-4	0.25 µg/L	103	50	130
		EP231X-LL: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.05 µg/L	110	50	130
		EP231X-LL: Perfluorohexanoic acid (PFHxA)	307-24-4	0.05 µg/L	107	50	130
		EP231X-LL: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.05 µg/L	108	50	130
		EP231X-LL: Perfluorooctanoic acid (PFOA)	335-67-1	0.05 µg/L	106	50	130

ub-Matrix: WATER				N	latrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery I	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P231B: Perfluor	oalkyl Carboxylic Acids (QCLot: 2524698) -c	ontinued					
EB1921176-002	Anonymous	EP231X-LL: Perfluorononanoic acid (PFNA)	375-95-1	0.05 µg/L	103	50	130
		EP231X-LL: Perfluorodecanoic acid (PFDA)	335-76-2	0.05 µg/L	87.0	50	130
		EP231X-LL: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.05 µg/L	125	40	130
		EP231X-LL: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.05 µg/L	110	40	130
		EP231X-LL: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.05 µg/L	97.8	40	130
		EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.125 µg/L	106	40	130
P231B: Perfluor	oalkyl Carboxylic Acids (QCLot: 2524699)						
EB1921138-003	Anonymous	EP231X-LL: Perfluorobutanoic acid (PFBA)	375-22-4	0.25 µg/L	93.2	50	130
		EP231X-LL: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.05 µg/L	101	50	130
		EP231X-LL: Perfluorohexanoic acid (PFHxA)	307-24-4	0.05 µg/L	107	50	130
		EP231X-LL: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.05 µg/L	102	50	130
		EP231X-LL: Perfluorooctanoic acid (PFOA)	335-67-1	0.05 µg/L	95.6	50	130
		EP231X-LL: Perfluorononanoic acid (PFNA)	375-95-1	0.05 µg/L	90.6	50	130
		EP231X-LL: Perfluorodecanoic acid (PFDA)	335-76-2	0.05 µg/L	82.2	50	130
		EP231X-LL: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.05 µg/L	# 156	40	130
		EP231X-LL: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.05 µg/L	110	40	130
		EP231X-LL: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.05 µg/L	97.8	40	130
		EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.125 µg/L	104	40	130
EP231C: Perfluoro	oalkyl Sulfonamides (QCLot: 2524698)						
EB1921176-002	Anonymous	EP231X-LL: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.05 µg/L	123	40	130
		EP231X-LL: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.125 µg/L	129	40	130
		(MeFOSA)					
		EP231X-LL: N-Ethyl perfluorooctane sulfonamide	4151-50-2	0.125 µg/L	112	40	130
		(EtFOSA)					
		EP231X-LL: N-Methyl perfluorooctane	24448-09-7	0.125 µg/L	96.1	50	130
		sulfonamidoethanol (MeFOSE)					
		EP231X-LL: N-Ethyl perfluorooctane	1691-99-2	0.125 µg/L	114	40	130
		sulfonamidoethanol (EtFOSE)					
		EP231X-LL: N-Methyl perfluorooctane	2355-31-9	0.05 µg/L	112	50	130
		sulfonamidoacetic acid (MeFOSAA)					
		EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic	2991-50-6	0.05 µg/L	81.4	40	130
		acid (EtFOSAA)					
P231C: Perfluoro	oalkyl Sulfonamides (QCLot: 2524699)						
EB1921138-003	Anonymous	EP231X-LL: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.05 µg/L	114	40	130
		EP231X-LL: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.125 µg/L	126	40	130
		(MeFOSA)					
		EP231X-LL: N-Ethyl perfluorooctane sulfonamide	4151-50-2	0.125 µg/L	100	40	130
		(EtFOSA)					

ub-Matrix: WATER				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	_imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P231C: Perfluoro	oalkyl Sulfonamides (QCLot: 2524699) - continued						
EB1921138-003	Anonymous	EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.125 µg/L	80.8	50	130
		EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.125 µg/L	104	40	130
		EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.05 µg/L	102	50	130
		EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.05 µg/L	# 35.2	40	130
P231D: (n:2) Flu	orotelomer Sulfonic Acids (QCLot: 2524698)						
B1921176-002	Anonymous	EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05 µg/L	117	50	130
		EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05 µg/L	116	50	130
		EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05 µg/L	119	50	130
		EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05 µg/L	114	50	130
P231D: (n:2) Flu	orotelomer Sulfonic Acids (QCLot: 2524699)						
B1921138-003	Anonymous	EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05 µg/L	107	50	130
		EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05 µg/L	# 135	50	130
		EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05 µg/L	106	50	130
		EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05 µg/L	# 136	50	130

	QA/QC Compliance	QA/QC Compliance Assessment to assist with Quality Review						
Nork Order	: EB1921176	Page	: 1 of 13					
Amendment	: 3							
Client	: AECOM Australia Pty Ltd	Laboratory	: Environmental Division Brisbane					
Contact	MR JAMES PEACHEY	Telephone	: +61 7 3552 8616					
Project	: 60609758	Date Samples Received	: 13-Aug-2019					
lite	: QFES	Issue Date	: 04-Sep-2019					
Sampler	: NK	No. of samples received	: 39					
Order number	: 60609758 2.0	No. of samples analysed	: 39					

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- Duplicate outliers exist please see following pages for full details.
- Laboratory Control outliers exist please see following pages for full details.
- Matrix Spike outliers exist please see following pages for full details.
- Surrogate recovery outliers exist for all regular sample matrices please see following pages for full details.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
uplicate (DUP) RPDs							
EP231A: Perfluoroalkyl Sulfonic Acids			Perfluorooctane sulfonic acid (PFOS)	1763-23-1	54.0 %	0% - 50%	RPD exceeds LOR based limits
aboratory Control Spike (LCS) Recoveries							
EP231B: Perfluoroalkyl Carboxylic Acids	QC-2524688-002		Perfluorobutanoic acid (PFBA)	375-22-4	37.5 %	52-128%	Recovery less than lower control limit
EP231C: Perfluoroalkyl Sulfonamides	QC-2524688-002		N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	54.5 %	65-126%	Recovery less than lower control limit
EP231C: Perfluoroalkyl Sulfonamides	QC-2524688-002		N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	45.4 %	64-126%	Recovery less than lower control limit
EP231C: Perfluoroalkyl Sulfonamides	QC-2524688-002		N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	35.2 %	63-124%	Recovery less than lower control limit
EP231C: Perfluoroalkyl Sulfonamides	QC-2524688-002		N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	48.1 %	58-125%	Recovery less than lower control limit
atrix Spike (MS) Recoveries							
EP231A: Perfluoroalkyl Sulfonic Acids			Perfluorooctane sulfonic acid (PFOS)	1763-23-1	37.3 %	55-127%	Recovery less than lower data quality objective
EP231B: Perfluoroalkyl Carboxylic Acids			Perfluorobutanoic acid (PFBA)	375-22-4	26.1 %	52-128%	Recovery less than lower data quality objective
EP231B: Perfluoroalkyl Carboxylic Acids			Perfluorononanoic acid (PFNA)	375-95-1	62.2 %	63-130%	Recovery less than lower data quality objective
EP231B: Perfluoroalkyl Carboxylic Acids			Perfluorodecanoic acid (PFDA)	335-76-2	37.0 %	55-130%	Recovery less than lower data quality objective
EP231B: Perfluoroalkyl Carboxylic Acids			Perfluoroundecanoic acid (PFUnDA)	2058-94-8	51.8 %	62-130%	Recovery less than lower data quality objective
EP231B: Perfluoroalkyl Carboxylic Acids			Perfluorododecanoic acid (PFDoDA)	307-55-1	51.3 %	53-134%	Recovery less than lower data quality objective
EP231B: Perfluoroalkyl Carboxylic Acids			Perfluorotridecanoic acid (PFTrDA)	72629-94-8	41.6 %	49-129%	Recovery less than lower data quality objective
EP231B: Perfluoroalkyl Carboxylic Acids			Perfluorotetradecanoic acid (PFTeDA)	376-06-7	49.2 %	59-129%	Recovery less than lower data quality objective
EP231C: Perfluoroalkyl Sulfonamides			N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	49.2 %	65-126%	Recovery less than lower data quality objective

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
atrix Spike (MS) Recoveries - Continued							
EP231C: Perfluoroalkyl Sulfonamides			N-Ethyl perfluorooctane	4151-50-2	48.6 %	64-126%	Recovery less than lower data quality
			sulfonamide				objective
			(EtFOSA)				
EP231C: Perfluoroalkyl Sulfonamides			N-Methyl	24448-09-7	33.0 %	63-124%	Recovery less than lower data quality
			perfluorooctane				objective
			sulfonamidoethanol				
			(MeFOSE)				
EP231C: Perfluoroalkyl Sulfonamides		1	N-Ethyl perfluorooctane	1691-99-2	39.7 %	58-125%	Recovery less than lower data quality
			sulfonamidoethanol				objective
			(EtFOSE)				
EP231C: Perfluoroalkyl Sulfonamides		1	N-Ethyl perfluorooctane	2991-50-6	51.2 %	55-130%	Recovery less than lower data quality
			sulfonamidoacetic				objective
			acid (EtFOSAA)				
EP231D: (n:2) Fluorotelomer Sulfonic Acids			6:2 Fluorotelomer	27619-97-2	57.6 %	61-130%	Recovery less than lower data quality
			sulfonic acid (6:2				objective
			FTS)				
EP231D: (n:2) Fluorotelomer Sulfonic Acids			10:2 Fluorotelomer	120226-60-0	46.8 %	60-130%	Recovery less than lower data quality
			sulfonic acid (10:2				objective
			FTS)				

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Duplicate (DUP) RPDs							
EP231A: Perfluoroalkyl Sulfonic Acids			Perfluorooctane	1763-23-1	23.9 %	0% - 20%	RPD exceeds LOR based limits
			sulfonic acid (PFOS)				
EP231P: PFAS Sums			Sum of PFAS		21.2 %	0% - 20%	RPD exceeds LOR based limits
EP231P: PFAS Sums			Sum of PFHxS and PFOS	355-46-4/1763-23-	22.5 %	0% - 20%	RPD exceeds LOR based limits
				1			
EP231P: PFAS Sums			Sum of PFAS (WA DER		21.4 %	0% - 20%	RPD exceeds LOR based limits
			List)				
/atrix Spike (MS) Recoveries							
EP231A: Perfluoroalkyl Sulfonic Acids			Perfluorooctane	1763-23-1	Not		MS recovery not determined,
			sulfonic acid (PFOS)		Determined		background level greater than or
							equal to 4x spike level.
EP231B: Perfluoroalkyl Carboxylic Acids	EB1921138003	Anonymous	Perfluoroundecanoic	2058-94-8	156 %	40-130%	Recovery greater than upper data
			acid (PFUnDA)				quality objective
EP231C: Perfluoroalkyl Sulfonamides	EB1921138003	Anonymous	N-Ethyl perfluorooctane	2991-50-6	35.2 %	40-130%	Recovery less than lower data quality
			sulfonamidoacetic				objective
			acid (EtFOSAA)				
EP231D: (n:2) Fluorotelomer Sulfonic Acids	EB1921138003	Anonymous	6:2 Fluorotelomer	27619-97-2	135 %	50-130%	Recovery greater than upper data
			sulfonic acid (6:2				quality objective
			FTS)				

Page	: 4 of 13
Work Order	: EB1921176 Amendment 3
Client	: AECOM Australia Pty Ltd
Project	: 60609758

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries - Continued							
EP231D: (n:2) Fluorotelomer Sulfonic Acids	EB1921138003	Anonymous	10:2 Fluorotelomer	120226-60-0	136 %	50-130%	Recovery greater than upper data
			sulfonic acid (10:2				quality objective
			FTS)				

Regular Sample Surrogates

Sub-Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
amples Submitted							
EP231S: PFAS Surrogate			13C4-PFOS		67.5 %	70-130 %	Recovery less than lower data quality
							objective
EP231S: PFAS Surrogate		1	13C4-PFOS		69.5 %	70-130 %	Recovery less than lower data quality
							objective
EP231S: PFAS Surrogate		1	13C4-PFOS		21.5 %	70-130 %	Recovery less than lower data quality
							objective
EP231S: PFAS Surrogate		1	13C4-PFOS		12.5 %	70-130 %	Recovery less than lower data quality
							objective
EP231S: PFAS Surrogate			13C4-PFOS		30.5 %	70-130 %	Recovery less than lower data quality
							objective
EP231S: PFAS Surrogate			13C4-PFOS		40.5 %	70-130 %	Recovery less than lower data quality
							objective
EP231S: PFAS Surrogate			13C8-PFOA		21.5 %	70-130 %	Recovery less than lower data quality
							objective
EP231S: PFAS Surrogate			13C8-PFOA		14.0 %	70-130 %	Recovery less than lower data quality
							objective
EP231S: PFAS Surrogate			13C8-PFOA		35.5 %	70-130 %	Recovery less than lower data quality
							objective
EP231S: PFAS Surrogate			13C8-PFOA		49.0 %	70-130 %	Recovery less than lower data quality
							objective

Sub-Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Samples Submitted							
EP231S: PFAS Surrogate	EB1921176-039	PR_QC303_190807	13C4-PFOS		35.9 %	70-130 %	Recovery less than lower data quality
							objective
EP231S: PFAS Surrogate	EB1921176-039	PR_QC303_190807	13C8-PFOA		45.5 %	70-130 %	Recovery less than lower data quality
							objective

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation	n: × = Holding time	breach ; ✓ = With	n holding time
Method	Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)							
HDPE Soil Jar (EA055)	06-Aug-2019				15-Aug-2019	20-Aug-2019	~
HDPE Soil Jar (EA055)	08-Aug-2019				15-Aug-2019	22-Aug-2019	✓
EP231A: Perfluoroalkyl Sulfonic Acids					1		
HDPE Soil Jar (EP231X)	06-Aug-2019	15-Aug-2019	02-Feb-2020	1	19-Aug-2019	24-Sep-2019	1
HDPE Soil Jar (EP231X)							
AB_SED01_190808, AB_SED02_190808,	08-Aug-2019	15-Aug-2019	04-Feb-2020	1	19-Aug-2019	24-Sep-2019	~
EP231B: Perfluoroalkyl Carboxylic Acids							
HDPE Soil Jar (EP231X)	06-Aug-2019	15-Aug-2019	02-Feb-2020	5	19-Aug-2019	24-Sep-2019	~
HDPE Soil Jar (EP231X)	08-Aug-2019	15-Aug-2019	04-Feb-2020	1	19-Aug-2019	24-Sep-2019	~

Matrix: SOIL				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	E>	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231C: Perfluoroalkyl Sulfonamides							
HDPE Soil Jar (EP231X)	06-Aug-2019	15-Aug-2019	02-Feb-2020	1	19-Aug-2019	24-Sep-2019	1
HDPE Soil Jar (EP231X)	08-Aug-2019	15-Aug-2019	04-Feb-2020	✓	19-Aug-2019	24-Sep-2019	1
EP231D: (n:2) Fluorotelomer Sulfonic Acids							
HDPE Soil Jar (EP231X)	06-Aug-2019	15-Aug-2019	02-Feb-2020	1	19-Aug-2019	24-Sep-2019	~
HDPE Soil Jar (EP231X)	08-Aug-2019	15-Aug-2019	04-Feb-2020	1	19-Aug-2019	24-Sep-2019	~
EP231P: PFAS Sums		1					
HDPE Soil Jar (EP231X)	06-Aug-2019	15-Aug-2019	02-Feb-2020	5	19-Aug-2019	24-Sep-2019	~
HDPE Soil Jar (EP231X)	08-Aug-2019	15-Aug-2019	04-Feb-2020	1	19-Aug-2019	24-Sep-2019	~
Matrix: WATER				Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time
Mathad	Sample Data		traction / Preparation			Analysis	<u> </u>

Method	Sample Date	Extraction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation

Matrix: WATER					Evaluation	n: × = Holding time	e breach ; ✓ = Withi	n holding time
Method		Sample Date	E>	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231A: Perfluoroalkyl Sulfonic Acids								
HDPE (no PTFE) (EP231X-LL)		06-Aug-2019	15-Aug-2019	02-Feb-2020	~	15-Aug-2019	02-Feb-2020	~
н		06-Aug-2019	19-Aug-2019	02-Feb-2020		19-Aug-2019	02-Feb-2020	1
HDPE (no PTFE) (EP231X-ST)		06-Aug-2019	27-Aug-2019	02-Feb-2020		27-Aug-2019	02-Feb-2020	· ·
HDPE (no PTFE) (EP231X-LL) PR_MW01_190807,	PR_MW02_190807	07-Aug-2019	15-Aug-2019	03-Feb-2020	1	15-Aug-2019	03-Feb-2020	1
HDPE (no PTFE) (EP231X-LL) PR_MW03_190807, PR_QC104_190807,	PR_MW04_190807, PR_QC303_190807	07-Aug-2019	16-Aug-2019	03-Feb-2020	~	16-Aug-2019	03-Feb-2020	~
HDPE (no PTFE) (EP231X-LL)		08-Aug-2019	02-Sep-2019	04-Feb-2020	1	02-Sep-2019	04-Feb-2020	~
HDPE (no PTFE) (EP231X-LL)		08-Aug-2019	15-Aug-2019	04-Feb-2020	1	15-Aug-2019	04-Feb-2020	~

Matrix: WATER					Evaluation	n: × = Holding time	breach ; 🗸 = Withi	n holding time	
Method		Sample Date	Ex	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP231B: Perfluoroalkyl Carboxylic Acids									
HDPE (no PTFE) (EP231X-LL)		06-Aug-2019	15-Aug-2019	02-Feb-2020	1	15-Aug-2019	02-Feb-2020	~	
HDPE (no PTFE) (EP231X-ST)		06-Aug-2019	19-Aug-2019	02-Feb-2020		19-Aug-2019	02-Feb-2020	1	
HDPE (no PTFE) (EP231X-ST)		06-Aug-2019	27-Aug-2019	02-Feb-2020		27-Aug-2019	02-Feb-2020	~	
HDPE (no PTFE) (EP231X-LL) PR_MW01_190807,	PR_MW02_190807	07-Aug-2019	15-Aug-2019	03-Feb-2020	1	15-Aug-2019	03-Feb-2020	~	
HDPE (no PTFE) (EP231X-LL) PR_MW03_190807, PR_QC104_190807,	PR_MW04_190807, PR_QC303_190807	07-Aug-2019	16-Aug-2019	03-Feb-2020	~	16-Aug-2019	03-Feb-2020	~	
HDPE (no PTFE) (EP231X-LL)		08-Aug-2019	02-Sep-2019	04-Feb-2020	1	02-Sep-2019	04-Feb-2020	1	
HDPE (no PTFE) (EP231X-LL)		08-Aug-2019	15-Aug-2019	04-Feb-2020	1	15-Aug-2019	04-Feb-2020	~	

Matrix: WATER					Evaluation	n: × = Holding time	breach ; 🗸 = Withi	n holding time
Method		Sample Date	E>	Extraction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231C: Perfluoroalkyl Sulfonamides								
HDPE (no PTFE) (EP231X-LL)		06-Aug-2019	15-Aug-2019	02-Feb-2020	1	15-Aug-2019	02-Feb-2020	~
HDPE (no PTFE) (EP231X-ST)		06-Aug-2019	19-Aug-2019	02-Feb-2020	1	19-Aug-2019	02-Feb-2020	1
HDPE (no PTFE) (EP231X-ST)		06-Aug-2019	27-Aug-2019	02-Feb-2020	<u> </u>	27-Aug-2019	02-Feb-2020	~
HDPE (no PTFE) (EP231X-LL) PR_MW01_190807,	PR_MW02_190807	07-Aug-2019	15-Aug-2019	03-Feb-2020	1	15-Aug-2019	03-Feb-2020	~
HDPE (no PTFE) (EP231X-LL) PR_MW03_190807, PR_QC104_190807,	PR_MW04_190807, PR_QC303_190807	07-Aug-2019	16-Aug-2019	03-Feb-2020	~	16-Aug-2019	03-Feb-2020	~
HDPE (no PTFE) (EP231X-LL)		08-Aug-2019	02-Sep-2019	04-Feb-2020	1	02-Sep-2019	04-Feb-2020	1
HDPE (no PTFE) (EP231X-LL)		08-Aug-2019	15-Aug-2019	04-Feb-2020	~	15-Aug-2019	04-Feb-2020	~

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method	lethod		Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231D: (n:2) Fluorotelomer Sulfonic Acid	s							
HDPE (no PTFE) (EP231X-LL)		06-Aug-2019	15-Aug-2019	02-Feb-2020	~	15-Aug-2019	02-Feb-2020	~
HDPE (no PTFE) (EP231X-ST)		06-Aug-2019	19-Aug-2019	02-Feb-2020	1	19-Aug-2019	02-Feb-2020	√
HDPE (no PTFE) (EP231X-ST)								
231X-LL) PR_MW01_190807,	PR_MW02_190807	07-Aug-2019	15-Aug-2019	03-Feb-2020	1	15-Aug-2019	03-Feb-2020	✓ ✓
HDPE (no PTFE) (EP231X-LL) PR_MW03_190807, PR_QC104_190807,	PR_MW04_190807, PR_QC303_190807	07-Aug-2019	16-Aug-2019	03-Feb-2020	1	16-Aug-2019	03-Feb-2020	1
HDPE (no PTFE) (EP231X-LL)		08-Aug-2019	02-Sep-2019	04-Feb-2020	1	02-Sep-2019	04-Feb-2020	~
HDPE (no PTFE) (EP231X-LL)		08-Aug-2019	15-Aug-2019	04-Feb-2020	~	15-Aug-2019	04-Feb-2020	~

Matrix: WATER					Evaluation	n: × = Holding time	breach ; 🗸 = Withi	n holding tim
Method		Sample Date	Sample Date Extra		traction / Preparation		Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP231P: PFAS Sums								
HDPE (no PTFE) (EP231X-LL)		06-Aug-2019	15-Aug-2019	02-Feb-2020	~	15-Aug-2019	02-Feb-2020	~
HDPE (no PTFE) (EP231X-ST)		06-Aug-2019	19-Aug-2019	02-Feb-2020		19-Aug-2019	02-Feb-2020	1
HDPE (no PTFE) (EP231X-ST)		06-Aug-2019	27-Aug-2019	02-Feb-2020	~	27-Aug-2019	02-Feb-2020	
HDPE (no PTFE) (EP231X-LL) PR_MW01_190807,	PR_MW02_190807	07-Aug-2019	15-Aug-2019	03-Feb-2020	1	15-Aug-2019	03-Feb-2020	~
HDPE (no PTFE) (EP231X-LL) PR_MW03_190807, PR_QC104_190807,	PR_MW04_190807, PR_QC303_190807	07-Aug-2019	16-Aug-2019	03-Feb-2020	~	16-Aug-2019	03-Feb-2020	~
HDPE (no PTFE) (EP231X-LL)		08-Aug-2019	02-Sep-2019	04-Feb-2020	~	02-Sep-2019	04-Feb-2020	~
HDPE (no PTFE) (EP231X-LL)		08-Aug-2019	15-Aug-2019	04-Feb-2020	1	15-Aug-2019	04-Feb-2020	~

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		С	Count		Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; 🗸 = Quality Control frequency within specification.
Quality Control Sample Type		С	Count		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS	EP231X-LL	4	26	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X-ST	2	5	40.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS	EP231X-LL	3	26	11.54	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X-ST	2	5	40.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS	EP231X-LL	3	26	11.54	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X-ST	2	5	40.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS	EP231X-LL	2	26	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X-ST	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	SOIL	In-House. A portion of soil is extracted with MTBE. The extract is taken to dryness, made up in mobile phase. Analysis is by LC/MSMS, ESI Negative Mode using MRM. Where commercially available, isotopically labelled analogues of the target analytes are used as internal standards for quantification. Where a labelled analogue is not commercially available, the internal standard with similar chemistry and the closest retention time to the target is used for quantification. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. This method complies with the quality control definitions as stated in QSM 5.1. Data is reviewed in line with the DQOs as stated in QSM5.1
Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS	EP231X-LL	WATER	In-house: Analysis of fresh and saline waters by solid phase extraction followed by LC-Electrospray-MS-MS, Negative Mode using MRM. Where commercially available, isotopically labelled analogues of the target analytes are used as internal standards for quantification. Where a labelled analogue is not commercially available, the internal standard with similar chemistry and the closest retention time to the target is used for quantification. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. This method complies with the quality control definitions as stated in QSM 5.1. Data is reviewed in line with the DQOs as stated in QSM5.1
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X-ST	WATER	In-house: Analysis of fresh and saline waters by solid phase extraction and LC-Electrospray-MS-MS, Negative Mode using MRM. This method is targeted to pristine environmental and drinking waters reporting at sub-parts per trillion. Where commercially available, isotopically labelled analogues of the target analytes are used as internal standards for quantification. Where a labelled analogue is not commercially available, the internal standard with similar chemistry and the closest retention time to the target is used for quantification. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. This method complies with the quality control definitions as stated in QSM 5.1. Data is reviewed in line with the DQOs as stated in QSM5.1
Preparation Methods	Method	Matrix	Method Descriptions
Sample Extraction for PFAS	EP231-PR	SOIL	In house
SPE preparation for LL and saline PFCs	EP231-SPE	WATER	In house

Australian Government

Department of Industry, Innovation and Science

National Measurement Institute

REPORT OF ANALYSIS

			Page: 1 of 6
			Report No. RN1244319
Client	AECOM AUSTRALIA PTY LTD	Job No.	: AECO06/190816/3
	LEVEL 8	Quote No	. : QT-02018
	540 WICKHAM STREET	Order No.	: 60609759_2_0
		Date Rec	eived : 16-AUG-2019
Attention	JAMES PEACHEY	Sampled	By : CLIENT
Project Name	60609758_2_0		
Your Client Se	rvices Manager : Richard Coghlan	Phone	: 02 9449 0161
Lab Reg No.	Sample Ref	Sample Description	

Lab Reg No.	
Date Sampled	
	Units
PFAS (per-and poly-fluoroalkyl s	substances)
PFBA (375-22-4)	mg/kg
PFPeA (2706-90-3)	mg/kg
PFHxA (307-24-4)	mg/kg
PFHpA (375-85-9)	mg/kg
PFOA (335-67-1)	mg/kg
PFNA (375-95-1)	mg/kg
PFDA (335-76-2)	mg/kg
PFUdA (2058-94-8)	mg/kg
PFDoA (307-55-1)	mg/kg
PFTrDA (72629-94-8)	mg/kg
PFTeDA (376-06-7)	mg/kg
PFHxDA (67905-19-5)	mg/kg
PFODA (16517-11-6)	mg/kg
FOUEA (70887-84-2)	mg/kg
PFBS (375-73-5)	mg/kg
PFPeS (2706-91-4)	mg/kg
PFHxS (355-46-4)	mg/kg
PFHpS (375-92-8)	mg/kg
PFOS (1763-23-1)	mg/kg
PFNS (68259-12-1)	mg/kg
PFDS (335-77-3)	mg/kg
PFOSA (754-91-6)	mg/kg
N-MeFOSA (31506-32-8)	mg/kg
N-EtFOSA (4151-50-2)	mg/kg
N-MeFOSAA (2355-31-9)	mg/kg
N-EtFOSAA(2991-50-6)	mg/kg
N-MeFOSE (24448-09-7)	mg/kg

Method
NR70

Page: 2 of 6

Report No. RN1244319 Lab Reg No. Date Sampled Units Method PFAS (per-and poly-fluoroalkyl substances) N-EtFOSE (1691-99-2) NR70 mg/kg NR70 4:2 FTS (757124-72-4) mg/kg 6:2 FTS (27619-97-2) NR70 mg/kg 8:2 FTS (39108-34-4) mg/kg **NR70** 10:2 FTS (120226-60-0) mg/kg NR70 8:2 diPAP (678-41-1) NR70 mg/kg NR70 PFBA (Surrogate Recovery) % PFPeA (Surrogate Recovery) % NR70 NR70 PFHxA (Surrogate Recovery) % **NR70** PFHpA (Surrogate Recovery) % PFOA (Surrogate Recovery) % **NR70** NR70 PFNA (Surrogate Recovery) % % NR70 PFDA (Surrogate Recovery) PFUdA (Surrogate Recovery) % **NR70** PFDoA (Surrogate Recovery) % **NR70 NR70** PFTeDA (Surrogate Recovery) % PFHxDA (Surrogate Recovery) **NR70** % FOUEA (Surrogate Recovery) % **NR70** PFBS (Surrogate Recovery) % NR70 % NR70 PFHxS (Surrogate Recovery) **NR70** PFOS (Surrogate Recovery) % PFOSA (Surrogate Recovery) % NR70 N-MeFOSA (Surrogate Recovery)% **NR70** NR70 N-EtFOSA (Surrogate Recovery) % **NR70** N-MeFOSAA (Surrogate Recover%) NR70 N-EtFOSAA (Surrogate Recoverv% NR70 N-MeFOSE (Surrogate Recovery)% N-EtFOSE (Surrogate Recovery) % **NR70** 4:2 FTS (Surrogate Recovery) **NR70** % 6:2 FTS (Surrogate Recovery) % **NR70** NR70 8:2 FTS (Surrogate Recovery) % 8:2 diPAP (Surrogate Recovery) % **NR70** Dates Date extracted 19-AUG-2019 19-AUG-2019 19-AUG-2019 21-AUG-2019 21-AUG-2019 21-AUG-2019 Date analysed

N19/020818

to

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

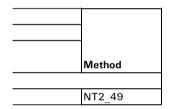
N19/020822:

Page: 3 of 6 Report No. RN1244319

PFOS is quantified using a combined branched and linear standard, linear and branched isomers are totalled for reporting. All results corrected for labelled surrogate recoveries. Selected PFAS surrogate recoveries are biased due to matrix effects. FOUEA Surrogate Recovery was not reported. LORs raised for selected analytes due to low surrogate recoveries.

Danny Slee, Section Manager Organic - NSW Accreditation No. 198

28-AUG-2019


Lab Reg No.	
Date Sampled	
	Units
Trace Elements	
	%

Pankaj Barai, Analyst

Inorganics - NSW Accreditation No. 198

28-AUG-2019

All results are expressed on a dry weight basis.

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Page: 4 of 6

< 0.001

0.50

0.68

9.8

25

0.36

0.010

< 0.001

0.0016

< 0.002

< 0.002

< 0.002

< 0.002

NR70

					Report I	No. RN124431
Client :	AECOM AUST	RALIA PTY LTD		Job No.	: AECO06	6/190816/3
	LEVEL 8			Quote No.	: QT-020	18
	540 WICKHAN	A STREET		Order No.	: 606097	59_2_0
				Date Receive	ed : 16-AUG	-2019
Attention :	JAMES PEACH	IEY		Sampled By	: CLIENT	
Project Name :	60609758_2_	0				
Your Client Ser	vices Manager	: Richard Coghlan		Phone	: 02 9449	0161
Lab Reg No.	Sample Re	f	Sample Description			
N19/020823	PR QC204	190807	WATER 7/08/19			
Lab Reg No.				N	19/020823	
Date Sampled		-		0	7-AUG-2019	
		Units				Method
PFAS (per-and	poly-fluoroalkyl	substances)				
PFBA (375-22-	4)	ug/L		0	.15	NR70
PFPeA (2706-9	0-3)	ug/L		0	.23	NR70
PFHxA (307-24	1-4)	ug/L		0	.92	NR70
PFHpA (375-85	5-9)	ug/L		0	.22	NR70
PFOA (335-67-	1)	ug/L		0	.34	NR70
PFNA (375-95-	1)	ug/L		0	.30	NR70
PFDA (335-76-	2)	ug/L		0	.027	NR70
PFUdA (2058-9	94-8)	ug/L		0	.12	NR70
PFDoA (307-55	5-1)	ug/L		<	<0.001	NR70
PFTrDA (72629	9-94-8)	ug/L		<	<0.002	NR70
PFTeDA (376-0	06-7)	ug/L		<	<0.002	NR70
PFHxDA (6790	5-19-5)	ug/L		<	<0.002	NR70
PFODA (16517	'-11-6)	ug/L		<	< 0.005	NR70

ug/L

FOUEA (70887-84-2)

PFBS (375-73-5)

PFPeS (2706-91-4)

PFHxS (355-46-4)

PFHpS (375-92-8)

PFOS (1763-23-1)

PFDS (335-77-3)

PFOSA (754-91-6)

N-MeFOSA (31506-32-8)

N-MeFOSAA (2355-31-9)

N-EtFOSAA(2991-50-6)

N-EtFOSA (4151-50-2)

PFNS (68259-12-1)

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

						Report	Page: 5 01 No. RN1244
Lab Reg No.					-	N19/020823	10. 111124-
Date Sampled					-	07-AUG-2019	
Bute Builpieu					-	07 A00 2010	
		Units					Method
PFAS (per-and p	ooly-fluoroalkyl s	ubstances)			-		
N-MeFOSE (244	48-09-7)	ug/L			_	< 0.005	NR70
N-EtFOSE (1691	1-99-2)	ug/L			_	< 0.005	NR70
4:2 FTS (75712	24-72-4)	ug/L			_	< 0.001	NR70
6:2 FTS (27619	9-97-2)	ug/L			_	0.034	NR70
8:2 FTS (39108	3-34-4)	ug/L			_	0.028	NR70
10:2 FTS (1202	226-60-0)	ug/L				< 0.001	NR70
8:2 diPAP (678-	-41-1)	ug/L			-	< 0.002	NR70
PFBA (Surrogate	e Recovery)	%			-	104	NR70
PFPeA (Surroga	te Recovery)	%			-	128	NR70
PFHxA (Surroga	te Recovery)	%			-	102	NR70
PFHpA (Surroga	te Recovery)	%			-	106	NR70
PFOA (Surrogate	e Recovery)	%			-	102	NR70
PFNA (Surrogate	e Recovery)	%			-	42	NR70
PFDA (Surrogate	e Recovery)	%			-	92	NR70
PFUdA (Surroga	te Recovery)	%			-	94	NR70
PFDoA (Surroga	te Recovery)	%			-	98	NR70
PFTeDA (Surrog	ate Recovery)	%			-	89	NR70
PFHxDA (Surrog	jate Recovery)	%			-	161	NR70
FOUEA (Surroga	ate Recovery)	%			-	58	NR70
PFBS (Surrogate	e Recovery)	%			-	126	NR70
PFHxS (Surroga	te Recovery)	%			-	71	NR70
PFOS (Surrogate	e Recovery)	%			-	129	NR70
PFOSA (Surroga	te Recovery)	%			-	79	NR70
N-MeFOSA (Sur	rogate Recovery)%			-	84	NR70
N-EtFOSA (Surr	ogate Recovery)	%			-	97	NR70
N-MeFOSAA (S	urrogate Recove	r\$⁄}			-	74	NR70
	rrogate Recover				-	85	NR70
	rogate Recovery				-	113	NR70
•	ogate Recovery)	%			-	127	NR70
4:2 FTS (Surrog	•	%			-	74	NR70
6:2 FTS (Surrog		%			-	89	NR70
8:2 FTS (Surrog		%			-	68	NR70
8:2 diPAP (Surr		%			-	102	NR70
Dates	- //	<u>I</u>			-	1	L
Date extracted			23-AUG-2019	23-AUG-2019	23-AUG-2019	23-AUG-2019	
Date analysed			23-AUG-2019	23-AUG-2019	23-AUG-2019	23-AUG-2019	

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Lab Reg No.	
Date Sampled	
	Units

0

Danny Slee, Section Manager Organic - NSW Accreditation No. 198

28-AUG-2019

Accredited for compliance with ISO/IEC 17025 - Testing. This report shall not be reproduced except in full. Results relate only to the sample(s) tested.

This Report supersedes reports: *RN1244317*

Measurement Uncertainty is available upon request.

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Page: 6 of 6 Report No. RN1244319

07-AUG-2019	
	Method

Client:

AECOM Australia Pty Ltd

QUALITY ASSURANCE REPORT

Oliciti.		/ 0300		u						
NMI QA Report No:	AECO06/190813/3				Sample Matrix:			Solid		
Analyte	Method	LOR	Blank	Sam	Sample Duplicates			Recoveries		
				Sample	Duplicate	RPD	LCS	Matrix Spike		
		mg/kg	mg/kg	mg/kg	mg/kg	%	%	%		
PFBA (375-22-4)	NR70	0.002	<0.002	NA	NA	NA	110	NA		
PFPeA (2706-90-3)	NR70	0.002	<0.002	NA	NA	NA	97	NA		
PFHxA (307-24-4)	NR70	0.001	<0.001	NA	NA	NA	101	NA		
PFHpA (375-85-9)	NR70	0.001	<0.001	NA	NA	NA	94	NA		
PFOA (335-67-1)	NR70	0.001	<0.001	NA	NA	NA	99	NA		
PFNA (375-95-1)	NR70	0.001	<0.001	NA	NA	NA	86	NA		
PFDA (335-76-2)	NR70	0.001	<0.001	NA	NA	NA	99	NA		
PFUdA (2058-94-8)	NR70	0.002	<0.002	NA	NA	NA	100	NA		
PFDoA (307-55-1)	NR70	0.002	<0.002	NA	NA	NA	106	NA		
PFTrDA (72629-94-8)	NR70	0.002	<0.002	NA	NA	NA	100	NA		
PFTeDA (376-06-7)	NR70	0.002	<0.002	NA	NA	NA	104	NA		
PFHxDA (67905-19-5)	NR70	0.002	<0.002	NA	NA	NA	89	NA		
PFODA (16517-11-6)	NR70	0.005	<0.005	NA	NA	NA	86	NA		
FOUEA (70887-84-2)	NR70	0.001	<0.001	NA	NA	NA	99	NA		
PFBS (375-73-5)	NR70	0.001	<0.001	NA	NA	NA	97	NA		
PFPeS (2706-91-4)	NR70	0.001	<0.001	NA	NA	NA	97	NA		
PFHxS (355-46-4)	NR70	0.001	<0.001	NA	NA	NA	96	NA		
PFHpS (375-92-8)	NR70	0.001	<0.001	NA	NA	NA	92	NA		
PFOS (1763-23-1)	NR70	0.002	<0.002	NA	NA	NA	110	NA		
PFNS (68259-12-1)	NR70	0.001	<0.001	NA	NA	NA	94	NA		
PFDS (335-77-3)	NR70	0.001	<0.001	NA	NA	NA	97	NA		
PFOSA (754-91-6)	NR70	0.001	< 0.001	NA	NA	NA	99	NA		
N-MeFOSA (31506-32-8)	NR70	0.002	< 0.002	NA	NA	NA	101	NA		
N-EtFOSA (4151-50-2)	NR70	0.002	< 0.002	NA	NA	NA	90	NA		
N-MeFOSAA (2355-31-9)	NR70	0.002	< 0.002	NA	NA	NA	102	NA		
N-EtFOSAA(2991-50-6)	NR70	0.002	< 0.002	NA	NA	NA	91	NA		
N-MeFOSE (24448-09-7)	NR70	0.005	<0.005	NA	NA	NA	87	NA		
N-EtFOSE (1691-99-2)	NR70	0.005	<0.005	NA	NA	NA	79	NA		
4:2 FTS (757124-72-4)	NR70	0.001	<0.001	NA	NA	NA	91	NA		
6:2 FTS (27619-97-2)	NR70	0.001	<0.001	NA	NA	NA	86	NA		
8:2 FTS (39108-34-4)	NR70	0.001	<0.001	NA	NA	NA	100	NA		
10:2 FTS (120226-60-0)	NR70	0.002	<0.002	NA	NA	NA	94	NA		
8:2 diPAP (678-41-1)	NR70	0.002	<0.002	NA	NA	NA	93	NA		

Results expressed in percentage (%) or mg/kg wherever appropriate.

Acceptable Spike recovery is 50-150%. Maximum acceptable RPDs on spikes and duplicates is 40%.

'NA ' = Not Applicable.

RPD= Relative Percentage Difference.

Signed:

Date:

Alen

Danny Slee Organics Manager, NMI-North Ryde 26/08/2019

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Australian Government

National Measurement Institute

QUALITY ASSURANCE REPORT

Client:	
---------	--

AECOM Australia Pty Ltd

NMI QA Report No:

AECO06/190816/3

Sample Matrix: Liquid

Analyte Method LOR Blank Sample Duplicates Recoveries Sample Duplicate RPD LCS Matrix Spike ug/L ug/L ug/L ug/L % % % PFBA (375-22-4) **NR70** 0.005 < 0.005 NA NA NA 130 NA PFPeA (2706-90-3) NR70 0.002 < 0.002 NA NA NA 97 NA PFHxA (307-24-4) **NR70** 0.001 < 0.001 NA NA NA 96 NA PFHpA (375-85-9) NR70 94 0.001 < 0.001 NA NA NA NA PFOA (335-67-1) **NR70** 0.001 < 0.001 NA NA NA 100 NA PFNA (375-95-1) NR70 0.001 < 0.001 NA 104 NA NA NA PFDA (335-76-2) **NR70** 0.001 < 0.001 NA NA NA 108 NA PFUdA (2058-94-8) **NR70** 0.001 < 0.001 NA NA NA 83 NA NR70 0.001 NA NA 80 NA PFDoA (307-55-1) < 0.001 NA PFTrDA (72629-94-8) NR70 0.002 < 0.002 NA NA NA 90 NA PFTeDA (376-06-7) NA NA 106 NA NR70 0.002 < 0.002 NA PFHxDA (67905-19-5) NR70 0.002 < 0.002 NA NA NA 86 NA PFODA (16517-11-6) **NR70** 0.005 < 0.005 NA NA NA 85 NA FOUEA (70887-84-2) NR70 0.001 NA NA NA 90 NA < 0.001 PFBS (375-73-5) **NR70** 0.001 < 0.001 NA NA NA 100 NA PFPeS (2706-91-4) NR70 0.001 < 0.001 NA 99 NA NA NA PFHxS (355-46-4) NR70 0.001 < 0.001 NA 104 NA NA NA PFHpS (375-92-8) NR70 0.001 < 0.001 NA NA NA 101 NA NR70 0.002 < 0.002 NA NA NA 99 NA PFOS (1763-23-1) PFNS (68259-12-1) NR70 0.001 < 0.001 NA NA NA 98 NA PFDS (335-77-3) NR70 0.001 < 0.001 NA NA NA 97 NA PFOSA (754-91-6) NR70 0.001 < 0.001 NA NA NA 96 NA N-MeFOSA (31506-32-8) NR70 0.002 < 0.002 NA NA NA 93 NA 0.002 < 0.002 108 N-EtFOSA (4151-50-2) **NR70** NA NA NA NA N-MeFOSAA (2355-31-9) **NR70** 0.002 < 0.002 NA NA NA 91 NA 98 N-EtFOSAA(2991-50-6) **NR70** 0.002 < 0.002 NA NA NA NA 0.005 < 0.005 NA NA NA 109 NA N-MeFOSE (24448-09-7) NR70 **NR70** 0.005 < 0.005 NA NA NA 91 NA N-EtFOSE (1691-99-2) **NR70** NA 98 0.001 < 0.001 NA NA NA 4:2 FTS (757124-72-4) **NR70** 0.001 < 0.001 NA NA NA 97 NA 6:2 FTS (27619-97-2) NR70 NA NA 106 NA 8:2 FTS (39108-34-4) 0.001 < 0.001 NA **NR70** 0.001 < 0.001 NA NA NA 112 NA 10:2 FTS (120226-60-0) 8:2 diPAP (678-41-1) **NR70** 0.002 < 0.002 NA NA NA 103 NA

Results expressed in percentage (%) or ug/L wherever appropriate.

Acceptable Spike recovery is 50-150%.

Maximum acceptable RPDs on spikes and duplicates is 40%.

'NA ' = Not Applicable.

RPD= Relative Percentage Difference.

Signed:

Date:

Alu

Danny Slee Organics Manager, NMI-North Ryde 28/08/2019

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

From: Peachey, James <<u>james.peachey@aecom.com</u>> Sent: Friday, 23 August 2019 5:47 AM To: Carsten Emrich <<u>Carsten.Emrich@alsglobal.com</u>> Cc: ALSEnviro Brisbane <<u>ALSEnviro.Brisbane@alsglobal.com</u>> Subject: [EXTERNAL] - Rebatch EB1921176 and ES1925572

CAUTION: This email originated from outside of ALS. Do not click links or open attachments unless you recognize the sender and are sure content is relevant to you.

Hi Carsten

Please could you rebatch the following samples for TOPA (EP231X-TOP):

4 -035 (PR_MW02_190807)

James Peachey Associate Director - Environment D +61 7 3553 3909 M +61 426 206 362 james.peachey@aecom.com

AECOM

Level 8, 540 Wickham Street, Fortitude Valley, QLD 4006 PO Box 1307 Fortitude Valley QLD 4006 T +61 7 3553 2000 F +61 7 3553 2050 aecom.com

Imagine it. Delivered.

LinkedIn Twitter Facebook Instagram

Telephone: +61-7-3243 7222

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: EB1922105		
Client	: AECOM Australia Pty Ltd	Laboratory	: Environmental Division Brisbane
Contact	: MR JAMES PEACHEY	Contact	: Carsten Emrich
Address	: Brisbane	Address	2 Byth Street Stafford QLD Australia 4053
E-mail	: james.peachey@aecom.com	E-mail	: carsten.emrich@alsglobal.com
Telephone	: +61 07 3553 2000	Telephone	: +61 7 3552 8616
Facsimile	: +61 07 3553 2050	Facsimile	: +61-7-3243 7218
Project	: 60609758	Page	: 1 of 2
Order number	: 60609758 2.0	Quote number	: EB2019AECOMAU0002 (BN/112/19)
C-O-C number	:	QC Level	NEPM 2013 B3 & ALS QC Standard
Site	: QFES		
Sampler	: NK		

Dates

Date Samples Received Client Requested Due Date	: 23-Aug-2019 05:47 : 30-Aug-2019	Issue Date Scheduled Reporting Date	: 23-Aug-2019 30-Aug-2019
Delivery Details			
Mode of Delivery	: Samples On Hand	Security Seal	: Not Available
No. of coolers/boxes	:	Temperature	:
Receipt Detail	REBATCH	No. of samples received / analysed	• 4/4

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- •
- This work order has been created as a rebatch of EB1921176 and ES1925572
- Discounted Package Prices apply only when specific ALS Group Codes ('W', 'S', 'NT' suites) are referenced on COCs.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Analysis will be conducted by ALS Environmental, Brisbane, NATA accreditation no. 825, Site No. 818 (Micro site no. 18958).
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

Matrix: WATER

as the determin tasks, that are incluin f no sampling default 00:00 on is provided, the	ation of moisture uded in the package. time is provided, the date of samplin sampling date wi	ditional analyses, such content and preparation the sampling time will g. If no sampling date II be assumed by the ckets without a time	 Control Control C
Laboratory sample	Client sampling	Client sample ID	VATER - PFAS - To
ID	date / time		A U L
EB1922105-004	07-Aug-2019 00:00	PR_MW02_190807	1

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE		
- A4 - AU Tax Invoice (INV)	Email	AP_CustomerService.ANZ@aecom.
		com
JAMES PEACHEY		
 *AU Certificate of Analysis - NATA (COA) 	Email	james.peachey@aecom.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	james.peachey@aecom.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	james.peachey@aecom.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	james.peachey@aecom.com
- A4 - AU Tax Invoice (INV)	Email	james.peachey@aecom.com
- Chain of Custody (CoC) (COC)	Email	james.peachey@aecom.com
- EDI Format - ESDAT (ESDAT)	Email	james.peachey@aecom.com
JANELLE PASSIER		
 *AU Certificate of Analysis - NATA (COA) 	Email	janelle.passier@aecom.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	janelle.passier@aecom.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	janelle.passier@aecom.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	janelle.passier@aecom.com
- A4 - AU Tax Invoice (INV)	Email	janelle.passier@aecom.com
- Chain of Custody (CoC) (COC)	Email	janelle.passier@aecom.com
- EDI Format - ESDAT (ESDAT)	Email	janelle.passier@aecom.com

CERTIFICATE OF ANALYSIS

Work Order	EB1922105	Page	: 1 of 5	
Client	: AECOM Australia Pty Ltd	Laboratory	: Environmental Division Bri	isbane
Contact	: MR JAMES PEACHEY	Contact	: Carsten Emrich	
Address	:	Address	: 2 Byth Street Stafford QLD	0 Australia 4053
	Brisbane			
Telephone	: +61 07 3553 2000	Telephone	: +61 7 3552 8616	
Project	: 60609758	Date Samples Received	: 23-Aug-2019 05:47	ANHIUR.
Order number	: 60609758 2.0	Date Analysis Commenced	: 27-Aug-2019	
C-O-C number	:	Issue Date	: 29-Aug-2019 17:06	
Sampler	: NK		C C	Hac-MRA NATA
Site	: QFES			
Quote number	: BN/112/19			
No. of samples received	: 4			Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 4			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Diana Mesa	2IC Organic Chemist	Brisbane Organics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID					
Client sampling date						
Compound	CAS Number	LOR	Unit			
EP231_TOP_A: Perfluoroalkyl Sulfoni	c Acids					
Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	µg/L			
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	µg/L			
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	µg/L			
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	µg/L			
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	µg/L			
Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	µg/L			
EP231 TOP B: Perfluoroalkyl Carbox	ylic Acids					
Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L			
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L			
Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L			
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L			
Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L			
Perfluorononanoic acid (PFNA)	375-95-1	0.02	µg/L			
Perfluorodecanoic acid (PFDA)	335-76-2	0.02	µg/L			
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	µg/L			
Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	µg/L			
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	µg/L			
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	µg/L			
EP231_TOP_C: Perfluoroalkyl Sulfon	amides					
Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	µg/L			
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	µg/L			
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	µg/L			

PR_MW02_190807	
07-Aug-2019 00:00	
EB1922105-004	
Result	
0.64	
0.64	
0.69	
11.3	
0.60	
28.0	
<0.02	
1.0	
1.21	
8.87	
0.32	
0.61	
0.37	
<0.02	
0.09	
<0.02	
<0.02	
<0.05	
	1
<0.02	
<0.05	

Page Work Order	4 of 5 EB1922105
Client	: AECOM Australia Pty Ltd
Project	: 60609758

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample IL
(Cl	ient sampli	ng date / tim
Compound	CAS Number	LOR	Unit
EP231_TOP_C: Perfluoroalkyl Sulfor	namides - Continued		
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	µg/L
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	µg/L
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	µg/L
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	µg/L
EP231_TOP_D: (n:2) Fluorotelomer S	ulfonic Acids		
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	µg/L
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	µg/L
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	µg/L
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	µg/L
EP231_TOP_P: PFAS Sums			
Sum of PFAS		0.01	µg/L
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.01	µg/L
Sum of TOP C4 - C14 Carboxylates and - C8 Sulfonates	C4	0.01	µg/L
[^] Sum of TOP C4 - C14 as Fluorine		0.01	µg/L
EP231_TOP_S: PFAS Surrogate			
13C4-PFOS		0.02	%
13C8-PFOA		0.02	%

PR_MW02_190807	
07-Aug-2019 00:00	
EB1922105-004	
Result	
<0.05	
<0.05	
<0.02	
<0.02	
<0.05	
<0.05	
<0.05	
<0.05	
53.7	
39.3	
53.7	
34.5	
104	
128	

Page	5 of 5
Work Order	: EB1922105
Client	: AECOM Australia Pty Ltd
Project	60609758

Surrogate Control Limits

Sub-Matrix: WATER	Recovery Limits (%)			
Compound	Low	High		
EP231_TOP_S: PFAS Surrogate				
13C4-PFOS		60	130	
13C8-PFOA		60	130	

QUALITY CONTROL REPORT

Work Order	: EB1922105	Page	: 1 of 6	
Client	: AECOM Australia Pty Ltd	Laboratory	: Environmental Division	Brisbane
Contact	: MR JAMES PEACHEY	Contact	: Carsten Emrich	
Address	:	Address	: 2 Byth Street Stafford C	QLD Australia 4053
	Brisbane			
Telephone	: +61 07 3553 2000	Telephone	: +61 7 3552 8616	
Project	: 60609758	Date Samples Received	: 23-Aug-2019	
Order number	: 60609758 2.0	Date Analysis Commenced	: 27-Aug-2019	
C-O-C number	·	Issue Date	· 29-Aug-2019	
Sampler	NK			Hac-MRA NATA
Site	QFES			
Quote number	: BN/112/19			
No. of samples received	: 4			Accredited for compliance with
No. of samples analysed	: 4			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Diana Mesa	2IC Organic Chemist	Brisbane Organics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EP231_TOP_A: Perf	fluoroalkyl Sulfonic Aci	ids (QC Lot: 2544054)							
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	µg/L	0.75	0.75	0.00	0% - 20%
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	µg/L	0.05	0.04	0.00	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	µg/L	0.08	0.07	15.0	No Limit
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	µg/L	0.81	0.76	7.14	0% - 20%
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	µg/L	0.03	0.03	0.00	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	µg/L	<0.02	<0.02	0.00	No Limit
EB1922179-007	Anonymous	EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	µg/L	<0.01	<0.01	0.00	No Limit
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	µg/L	<0.02	<0.02	0.00	No Limit
EP231_TOP_B: Perf	fluoroalkyl Carboxylic /	Acids (QC Lot: 2544054)							
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	0.06	0.05	0.00	No Limit
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	0.17	0.10	53.7	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	0.54	0.47	13.5	0% - 20%
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	0.08	0.05	36.2	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	µg/L	<0.05	<0.05	0.00	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	0.00	No Limit
EB1922179-007	Anonymous	EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	<0.01	0.00	No Limit

Page	: 3 of 6
Work Order	: EB1922105
Client	: AECOM Australia Pty Ltd
Project	: 60609758

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231_TOP_B: Per	fluoroalkyl Carboxylic Ac	cids (QC Lot: 2544054) - continued							
EB1922179-007	Anonymous	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	µg/L	<0.05	<0.05	0.00	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L	<0.1	<0.1	0.00	No Limit
P231 TOP C: Per	fluoroalkyl Sulfonamide	s (QC Lot: 2544054)							
		EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: N-Methyl perfluorooctane	2355-31-9	0.02	μg/L	< 0.02	<0.02	0.00	No Limit
		sulfonamidoacetic acid (MeFOSAA)	2000 01 0	0.01	P9-	0.02	0.02	0.00	
		EP231X: N-Ethyl perfluorooctane	2991-50-6	0.02	µg/L	< 0.02	<0.02	0.00	No Limit
		sulfonamidoacetic acid (EtFOSAA)			P-3-				
		EP231X: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.05	µg/L	< 0.05	<0.05	0.00	No Limit
		(MeFOSA)			10				
		EP231X: N-Ethyl perfluorooctane sulfonamide	4151-50-2	0.05	µg/L	< 0.05	<0.05	0.00	No Limit
		(EtFOSA)							
		EP231X: N-Methyl perfluorooctane	24448-09-7	0.05	µg/L	< 0.05	<0.05	0.00	No Limit
		sulfonamidoethanol (MeFOSE)							
		EP231X: N-Ethyl perfluorooctane	1691-99-2	0.05	µg/L	<0.05	<0.05	0.00	No Limit
		sulfonamidoethanol (EtFOSE)							
EB1922179-007	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: N-Methyl perfluorooctane	2355-31-9	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		sulfonamidoacetic acid (MeFOSAA)							
		EP231X: N-Ethyl perfluorooctane	2991-50-6	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		sulfonamidoacetic acid (EtFOSAA)							
		EP231X: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.05	µg/L	<0.05	<0.05	0.00	No Limit
		(MeFOSA)							
		EP231X: N-Ethyl perfluorooctane sulfonamide	4151-50-2	0.05	µg/L	<0.05	<0.05	0.00	No Limit
		(EtFOSA)							
		EP231X: N-Methyl perfluorooctane	24448-09-7	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		sulfonamidoethanol (MeFOSE)							
		EP231X: N-Ethyl perfluorooctane	1691-99-2	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		sulfonamidoethanol (EtFOSE)							
P231_TOP_D: (n:2) Fluorotelomer Sulfonic	Acids (QC Lot: 2544054)							
		EP231X: 4:2 Fluorotelomer sulfonic acid (4:2	757124-72-4	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		FTS)							

Page	: 4 of 6
Work Order	: EB1922105
Client	: AECOM Australia Pty Ltd
Project	: 60609758

ub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231_TOP_D: (n:2) Fluorotelomer Sulfonic	Acids (QC Lot: 2544054) - continued							
EB1922105-001	HH_MW03_190806	EP231X: 6:2 Fluorotelomer sulfonic acid (6:2	27619-97-2	0.05	µg/L	<0.05	<0.05	0.00	No Limit
		FTS)							
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2	39108-34-4	0.05	µg/L	<0.05	<0.05	0.00	No Limit
		FTS)							
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2	120226-60-0	0.05	µg/L	<0.05	<0.05	0.00	No Limit
		FTS)							
EB1922179-007 Anonymou	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2	757124-72-4	0.05	µg/L	<0.05	<0.05	0.00	No Limit
		FTS)							
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2	27619-97-2	0.05	µg/L	<0.05	<0.05	0.00	No Limit
		FTS)							
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2	39108-34-4	0.05	µg/L	<0.05	<0.05	0.00	No Limit
		FTS)							
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2	120226-60-0	0.05	µg/L	<0.05	<0.05	0.00	No Limit
		FTS)							
P231_TOP_P: PFA	S Sums (QC Lot: 25440	54)							
		EP231X: Sum of PFAS		0.01	µg/L	2.57	2.32	10.2	0% - 20%
		EP231X: Sum of PFHxS and PFOS	355-46-4/1763-	0.01	µg/L	1.56	1.51	3.26	0% - 20%
			23-1						
		EP231X: Sum of TOP C4 - C14 Carboxylates and		0.01	µg/L	2.57	2.32	10.2	0% - 20%
		C4 - C8 Sulfonates							
		EP231X: Sum of TOP C4 - C14 as Fluorine		0.01	µg/L	1.64	1.48	10.3	0% - 20%
B1922179-007	Anonymous	EP231X: Sum of PFAS		0.01	µg/L	<0.01	<0.01	0.00	No Limit
		EP231X: Sum of PFHxS and PFOS	355-46-4/1763-	0.01	µg/L	<0.01	<0.01	0.00	No Limit
			23-1						
		EP231X: Sum of TOP C4 - C14 Carboxylates and		0.01	µg/L	<0.01	<0.01	0.00	No Limit
		C4 - C8 Sulfonates							
		EP231X: Sum of TOP C4 - C14 as Fluorine		0.01	µg/L	<0.01	<0.01	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Recovery Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP231_TOP_A: Perfluoroalkyl Sulfonic Acids (QCLot: 2	2544054)								
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	µg/L	<0.02					
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	µg/L	<0.02					
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	µg/L	<0.02	0.946 µg/L	87.4	50	150	
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	µg/L	<0.02					
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	µg/L	<0.01	0.928 µg/L	64.1	50	150	
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	µg/L	<0.02					
EP231_TOP_B: Perfluoroalkyl Carboxylic Acids (QCLot	t: 2544054)								
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L	<0.1					
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	<0.02					
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02					
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	<0.02					
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	<0.01	1 µg/L	99.7	50	150	
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	µg/L	<0.02					
EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	µg/L	<0.02					
EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	µg/L	<0.02					
EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	µg/L	<0.02					
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	µg/L	<0.02					
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	µg/L	<0.05					
EP231_TOP_C: Perfluoroalkyl Sulfonamides (QCLot: 2	.544054)								
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	µg/L	<0.02					
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	µg/L	<0.05					
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	µg/L	<0.05					
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	µg/L	<0.05					
P231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	µg/L	<0.05					
P231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	µg/L	<0.02					
P231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	µg/L	<0.02					
EP231 TOP D: (n:2) Fluorotelomer Sulfonic Acids (QC	Lot: 2544054)								
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	µg/L	<0.05					
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	µg/L	<0.05	0.0948 µg/L	-1.05	0	200	
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	µg/L	<0.05					

Page	: 6 of 6
Work Order	: EB1922105
Client	: AECOM Australia Pty Ltd
Project	: 60609758

Jb-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%) Recovery L		Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP231_TOP_D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2544054) - continued									
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	µg/L	<0.05					
EP231 TOP P: PFAS Sums (QCLot: 2544054)									
EP231X: Sum of PFAS		0.01	µg/L	<0.01					
EP231X: Sum of PFHxS and PFOS	355-46-4/17	0.01	µg/L	<0.01					
	63-23-1								
EP231X: Sum of TOP C4 - C14 Carboxylates and C4 - C8		0.01	µg/L	<0.01					
Sulfonates									
EP231X: Sum of TOP C4 - C14 as Fluorine		0.01	µg/L	<0.01					

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

QA/QC Compliance Assessment to assist with Quality Review						
Work Order	: EB1922105	Page	: 1 of 5			
Client	: AECOM Australia Pty Ltd	Laboratory	: Environmental Division Brisbane			
Contact	: MR JAMES PEACHEY	Telephone	: +61 7 3552 8616			
Project	: 60609758	Date Samples Received	: 23-Aug-2019			
Site	: QFES	Issue Date	: 29-Aug-2019			
Sampler	: NK	No. of samples received	: 4			
Order number	: 60609758 2.0	No. of samples analysed	: 4			

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	in holding time
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231_TOP_A: Perfluoroalkyl Sulfonic Acids							
HDPE (no PTFE) (EP231X (TOP))	00.000	07 4	02-Feb-2020	,	07 4	02-Feb-2020	
HDPE (no PTFE) (EP231X (TOP))	06-Aug-2019	27-Aug-2019	02-Feb-2020	~	27-Aug-2019	02-Feb-2020	✓
PR_MW02_190807	07-Aug-2019	27-Aug-2019	03-Feb-2020	1	27-Aug-2019	03-Feb-2020	 ✓
HDPE (no PTFE) (EP231X (TOP))							
	08-Aug-2019	27-Aug-2019	04-Feb-2020	✓	27-Aug-2019	04-Feb-2020	✓
EP231_TOP_B: Perfluoroalkyl Carboxylic Acids							
HDPE (no PTFE) (EP231X (TOP))			00 Eak 0000	,		00 5-6 0000	
	06-Aug-2019	27-Aug-2019	02-Feb-2020	~	27-Aug-2019	02-Feb-2020	✓
HDPE (no PTFE) (EP231X (TOP)) PR MW02 190807	07-Aug-2019	27-Aug-2019	03-Feb-2020	1	27-Aug-2019	03-Feb-2020	1
HDPE (no PTFE) (EP231X (TOP))							•
	08-Aug-2019	27-Aug-2019	04-Feb-2020	1	27-Aug-2019	04-Feb-2020	✓
EP231_TOP_C: Perfluoroalkyl Sulfonamides							
HDPE (no PTFE) (EP231X (TOP))							
	06-Aug-2019	27-Aug-2019	02-Feb-2020	~	27-Aug-2019	02-Feb-2020	✓
HDPE (no PTFE) (EP231X (TOP))							
PR_MW02_190807	07-Aug-2019	27-Aug-2019	03-Feb-2020	✓	27-Aug-2019	03-Feb-2020	✓
HDPE (no PTFE) (EP231X (TOP))	08-Aug-2019	27-Aug-2019	04-Feb-2020	1	27-Aug-2019	04-Feb-2020	1
EP231_TOP_D: (n:2) Fluorotelomer Sulfonic Acids							
HDPE (no PTFE) (EP231X (TOP))							
	06-Aug-2019	27-Aug-2019	02-Feb-2020	1	27-Aug-2019	02-Feb-2020	✓
HDPE (no PTFE) (EP231X (TOP))							
PR_MW02_190807	07-Aug-2019	27-Aug-2019	03-Feb-2020	-	27-Aug-2019	03-Feb-2020	✓
HDPE (no PTFE) (EP231X (TOP))	08-Aug-2019	27-Aug-2019	04-Feb-2020	~	27-Aug-2019	04-Feb-2020	~

Page	: 3 of 5
Work Order	: EB1922105
Client	: AECOM Australia Pty Ltd
Project	: 60609758

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	in holding time
Method	Sample Date	Extraction / Preparation Analysis			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231_TOP_P: PFAS Sums							
HDPE (no PTFE) (EP231X (TOP))							
	06-Aug-2019	27-Aug-2019	02-Feb-2020	1	27-Aug-2019	02-Feb-2020	\checkmark
HDPE (no PTFE) (EP231X (TOP))							
PR_MW02_190807	07-Aug-2019	27-Aug-2019	03-Feb-2020	1	27-Aug-2019	03-Feb-2020	✓
HDPE (no PTFE) (EP231X (TOP))							
	08-Aug-2019	27-Aug-2019	04-Feb-2020	1	27-Aug-2019	04-Feb-2020	\checkmark

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
PFAS by LCMSMS after oxidation (TOP)	EP231X (TOP)	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PFAS by LCMSMS after oxidation (TOP)	EP231X (TOP)	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PFAS by LCMSMS after oxidation (TOP)	EP231X (TOP)	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page	5 of 5
Work Order	: EB1922105
Client	: AECOM Australia Pty Ltd
Project	: 60609758

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
PFAS by LCMSMS after oxidation (TOP)	EP231X (TOP)	WATER	In house, following oxidation per Houtz, Erika F.; Sedlak, David L. (2012): Oxidative Conversion as a Means of Detecting Precursors to Perfluoroalkyl Acids in Urban Runoff. In Environmental Science & Technology 46 (17), pp. 9342;9349.: A portion of the oxidised sample is mixed with methanol (1:1) prior to analysis by LC-Electrospray-MS-MS, Negative Mode using MRM. Where commercially available, isotopically labelled analogues of the target analytes are used as internal standards for quantification. Where a labelled analogue is not commercially available, the internal standard with similar chemistry and the closest retention time to the target is used for quantification. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers.
Preparation Methods	Method	Matrix	Method Descriptions
Total Oxidisable Precursor Digest for PFAS	* ORG70-W	WATER	In-House with oxidation per Houtz, Erika F.; Sedlak, David L. (2012): Oxidative Conversion as a Means of Detecting Precursors to Perfluoroalkyl Acids in Urban Runoff. In Environmental Science & Technology 46 (17), pp. 9342;9349: A 5 mL sample is digested with persulfate under alkaline conditions, neutralised and prepared for analysis per EP231.